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ABSTRACT

This paper describes a numerical investigation of structural safety
where the ice dome is subjected to a concentrated load such as a human
live load on the apex. Regarding the problem as a short-term loading
and the elastic behavior of ice, the elastic solution is based on the
theory of a spherical shallow shell under a small circular uniform load.
The cases of both single and twin loads on a dome are investigated,
assuming that the ice dome will break when the tensile stress reaches a
certain maximum value. Estimating that the weight of a human is 100
kg and the allowable stress of the ice is 3 kg/em?, where the flexural
strength is 10 kg/cm?, it is concluded that the minimum thickness for
the ice is 6 cm for spans up to 15 m, and 7 cm for spans between 15 m
and 30 m. It is also true for twin loads when the loading distance is 1 m
apart.

KEY WORDS: Ice Dome, Human live load, Short-term structural
safety, Small circular uniform load, Minimum ice thickness

INTRODUCTION

Ice shells are being used as winter architectural structures in inland
Hokkaido, where the volume of snow and sustained sub-freezing
temperatures make conditions favorable (Kokawa et al., 2000). The ice
shell creates a beautiful space in the environment from the translucent
thin plate and the unique curved surface form. The interior space has a
lunescent atmosphere with full of natural light in daytime, and the
exterior looks like a gigantic chandelier in the dark at night. As the
typical example of the applications, since 1997 in Tomamu, many ice
shells are being used each winter for about 3 months as leisure-
recreational facilities as shown in Fig.1. The construction method of
blowing snow and spraying water onto an pneumatic formwork has
constructional rationality (Kokawa, 1985), having taken only one week
to complete ice domes spanning 20 to 30 meters in the past field
experiments (Kokawa, 2002). The shell has also high structural
efficiency, because the form determined from the reticular geometry of
the covered ropes in the formwork follows automatically so that the

Fig.1 Ice Shells in Tomamu (2002-2003 winter)
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Fig.2 Spraying water on ice dome under construction

membrane stresses are mainly compressive under self-weight load. The
experimental studies on the structural engineering problems (Kokawa
and Murakami, 1986; Kokawa, 1988) and the practical applications in
ice shell construction have been conducted in the winter environment of
Hokkaido since 1980s. As the result, it is recognized that the ice shell is
a practical ice structure for winter activities in snowy and cold regions.
However, there are still engineering problems to be solved concerning
design, construction, structural safety and maintenance in order to
realize a reliable structure. The greatest importance are the problems
concerning structural safety.

This paper describes a numerical investigation of minimum thickness
for ice dome under short-term concentrated loading. Workers
occasionally go up on the ice dome under various situations such as
snow removal and the water spraying in the construction process as
shown in Fig.2. In such situation, the minimum thickness of the ice
should be determined to ensure safety. A local bending stress occurs at
the vicinity of the concentrated loading point and may cause a fatal
fracture in the case of a brittle material such as ice. Therefore the
structural safety of the ice dome must be investigated when the ice
dome is subjected to a concentrated load such as a human live load on
the apex. Regarding the problem as a short-term loading and the elastic
behavior of ice, the elastic solution is based on the theory of a spherical
shallow shell under a small circular uniform load. The cases of both
single and twin loads on a dome are numerically investigated, assuming
that the ice dome will break when the tensile stress reaches a certain
maximum value.

ELASTIC SOLUTION OF CIRCULAR UNIFORM LOAD

Solution of Vertical Displacement and Stress Function

The differential equations are given in Eq.(1) where a shallow spherical
shell is subjected to a uniformly circular load, as shown in Fig.3
(Timoshenko,S. P. and Woinoesky-Krieger,S., 1959a).

Equilibrium equation: yA,,_ L \p_ qG(r,a)
DR D
(1)

Eh

Compatibility equation: AAF + == Aw =0
R

2
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Where A =—+——
ere dr* rdr’

function, R is the radius of curvature of the shell,

w is the vertical displacement, F is the stress

ER’ .
D(Z m} is flexural rigidity of the plate, / is the shell thickness, £
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q : constant load per unit area

A : thickness l
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R : radius of shell

Fig.3 Spherical shallow shell under uniformly circular load

is Young’s modulus, v is Poisson’s ratio and ¢ is the constant load per
unit area over the circle with radius a. Function G is as follows:

0<r<a

The solutions of w and F' are given by the equations (2) and (3) for each
region (see APPENDIX-1).

In the region I (x<a),

J12(1-v? ! '
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Where P = ma’q, P is the total load, y = r L1 = L, lis
/ 12(1-v?)
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characteristic length, o = 7 '= o ber,bei,ker and kei are Kelvin
X
functions.
In the region II (x>a),
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Solution of Bending Moments and Membrane Forces

The relationship between the bending moments M, and M,, the
membrane forces N, and N,, shown in Fig.3 and the displacement w, the
stress function F,, are expressed as follows:



d? d 2
M, =-DE X+ 280y - p LB, D)
di r dr dr dr’®
4)
N Ldr, &
" ordr Codr?

In the region I (x<a),
Substituting Eq. (2) for Eq.(4), Egs. (5) and (6) are given as follows:
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In the region II (x>a),
Substituting Eq. (3) for Eq.(4), Egs. (7) and (8) are given as follows:
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NUMERICAL ANALYSIS
Single Load

A single uniformly circular load is discussed in this section. Here, the
maximum tension stress ogm,ac occurs on the inner surface at the centre
of the load and oy, is given by Eq. (9) using Egs.(5) and (6).

M, N, 1 [P,j

o = = — —
s max > ) e

(h6] x:() s h

where, k; is loading coefficient.
1
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©
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Fig. 4 shows the relationship between k; and a where 0<0.8. In the
same way as the problem of a floating ice plate (Kerr, 1976), the k; can
be very closely approximated by the linear function of « between 0.15
and 0.35. Eq.(10) shows the straight line connecting (¢=0.2, £=0.8467)
and (¢=0.3, k£=1.0683) where v=0.3. Using Eq.(10), structural safety
when human weight of 100 kg is loaded on the ice dome is numerically
examined as follows:

k., =0.4035(1+5.49200).......rrrrrrrrrcee... (10)

Assuming that the shoe size is 10cm % 30cm, the equivalent radius a is
estimated at 10 cm for the same area.

k
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Fig.4 Comparison between k; (Eq. (9) ) and k4 (Eq. (10))

. a a -~ 18.18

U =03, a=—= Y12(1-v*) =—

simg v ) / m ( ) \/ﬁ
Furthermore, assuming that the open angle of the dome is 120°, the

3.9
D, h
the dome at the base.

Table 1 shows the numerical results where D=15 m and 30 m.

final expression of ¢ becomes a = , where Dy is the diameter of

Table 1 Numerical result of single load (P=100 kg)

D s(m) h(cm) a ksA Usmax(kg/ sz)
15 5 0.276 1.016 3.94
6 0.252 0.962 2.89
30 6 0.178 0.799 3.48
7 0.165 0.769 2.65

Here, the compressive membrane stress o, (kg/cm?) is computed 0.37
kg/em? for D=15 m and 0.74 kg/cm® for D=30 m based on the
membrane theory in shell under the gravity load and these o, are
neglected in the Table 1 for the safety side of the evaluation. According
to an experiment of ice beams (see APPENDIX-2), the short-term
flexural strength of the ice is assumed to be 10 kg/cm® Because good
quality of ice is produced artificially by the careful application of snow
by blowing and water by spraying onto a pneumatic membrane, the
density of the ice becomes about 0.85 g/cm® polycrystalline ice. If the
allowable stress is evaluated at 3.0 kg/cm? and 6,y does not exceed 3
kg/cm?, it is judged that the dome is thick enough to have structural



safety against a short-term bending failure. As a result, the minimum

thickness of the ice is 6 cm for spans up to 15 m, and 7 cm for spans S
between 15 m and 30 m at the base. 3 — T
_ 25 F— s=seq
Twin Loads — .. s=2a -
The problem where the ice dome is subjected to the same size and 2
weight of two circular uniform loads keeping the distance, s, between —— —-—--s=3a — — P
the central points, is discussed here. As seen in the results in previous L5 1 // -
section, the tensile stress on the inner surface of the shell under single 1 e e
loading has the following relationship o, 20, where o, and o, are = "/ =
circumferential and radial bending stress, respectively, and the both are 0.5 B e
equal directly below the centre point of the load. The o, or fi(x) , is 0 sill a
given by the following Eq.(11).
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Fig.5 Stress distribution under twin loads O =T
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Fig.5 shows two curves of f;: one f;(x) and the other f;(x-5). The aim of
the subject here is to find out the exact maximum value of Fig. 7b B-a curve
S (= (x)Hf(x-5)) where 0<x<s/2. However, comparing the values of

both ends, f,(0)(=f,(0)+ f,(s)) and  f, (%)(= 2, (%)), the

In solving Eq.(12.b), the s.,-a curve is found in the region between
larger one is considered the maximum value f,,. in the twin loading s )
problem. As s is clearly larger than 2a, therefore, the following s=2a and s=3a. Therefore, where s = da (d 23), f, (E) < f,(0) 1

Eqgs.(12.a-c) are given according to the range of s.
found. f,(0) is given through Eq.(13).
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Table 2 Numerical result of twin loads (P,

=100 kg)

D(m) | h(cm) o d_| 4@ B(d) kaa S gma(kglem?)
15 6 0.252 5 2.4766 0.22036 0.844 3.29
10 2.2153 0.36382 0.922 3.01
30 7 0.165 5 2.4766 0.22036 0.629 3.24
10 2.2153 0.36382 0.729 2.80
6\ ber'a . ker'(da), bei'a kei'(do) This paper assumed 3 kg/cm? as the allowable flexural stress in the ice,
0= _(;][T kei(da)+{1-v) (da) }_T{V ker(da)+{1-v) (de) 2 consigerr)ing that the ice %n the dome has a good quality to build up by a

_J120-v?) {bei'a (_ kei(dar) - ker‘(da)j+ ber'a (ker( da)— kei'(da)j_ 1 }
o

K (da) (da) 2(da)?
+(ij(l +V)(@J77N12(17\/2)(1<eﬂ+%} ................................... 13)
T a 2z a a”

In accordance with the previous single loading problem, the loading

coefficient k, = —— is approximated through a linear equation of a
d

as shown in Eq.(14)
k,, =A(d)a+ B(d) (14)

A(d) and B(d) of Eq.(14) are shown in Fig.7a and Fig.7b, respectively,
and lliim A(d) and Lliim B(d) are 2.2160 and 0.4035, respectively

which agree with the coefficients of Eq.(10).

Based on the approximate curve in Fig.(7a,b) and Eq.(14), a numerical
result is presented in Table 2.

As seen in the table, it is concluded that the minimum thickness for the
ice is 6 cm for spans up to 15 m, and 7 cm for spans between 15 m and
30 m. It is also true for twin loads when the loading distance is 1 m
apart.

CONCLUDING REMARKS

This paper described a numerical investigation of structural safety
when the ice dome is subjected to a concentrated load a human live
load on the apex. Regarding the problem as a short-term loading and
the elastic behavior of ice, the elastic solution is based on the theory of
a spherical shallow shell under a uniformly small circular load. Both
the cases of single load and twin loads on a dome are investigated,
assuming that the ice dome will break when the tensile stress reaches a
certain maximum value. Estimating that the weight of a human is 100
kg and the allowable stress of the ice is 3 kg/cmz, where the flexural
strength is 10 kg/cm?, it is concluded that the minimum thickness of the
ice becomes 6 cm under a 15 m span, and 7 cm over a 15 m up to 30 m
span, even though the distance is 1 m in case of twin loads. On the
other side, according to the previous experiments of the reduced models
of ice dome under a short-term circular load on the apex, the ultimate
failure loads were found to be higher than the first cracking load
(Kokawa and Hirasawa, 1982/1983). Therefore, it seems that the
minimum thickness given in this paper is thick enough to have
structural safety against the short-term failure.

As the ice thickness of the completed ice dome is normally in the range
of 12 to 25 cm corresponding to the ice dome’s span ranging from 10 to
30 m, it is clear that an adequate level of safety will be achieved for the
subject being addressed because the above-mentioned minimum
thickness is greatly exceeded. However, as the ice plate during a
construction work and a removal snow for the maintenance, might be
thinner than the completion, the proposed simplified formula will be
useful for checking the structural safety.

careful application of blowing snow and spraying water onto a
formwork and it can be expected the flexural strength of the ice exceeds
10 kg/em® (see Appendix-2).

In order to evaluate the minimum thickness of an ice dome in detail
more, the following two subjects must be investigated in the future.

(1) The short-term flexural strength of the ice produced by blowing
snow and spraying water.

(2) The initial cracking load and the ultimate failure load of an ice
dome under a concentrated circular load on the apex.

APPENDIX-1: INDUCEMENT OF ELASTIC SOLUTION

The fundamental solutions wy, Fy under a concentrated load P are given
by Eq.(A-1) (Timoshenko, S. P. and Woinoesky-Krieger, S.,1959a).

W, =—+—-—- 3-v") PR keix
} (A-1)

2
J ,  [:characteristic length

4 7 ERW?

F, :—E(kerxﬂogx)
’ 2

Rh

J120-v?)

And, wy is the solution for vertical displacement in an elastic plate
under a concentrated load, which is expressed in the same way as the
solution for Hertz’s problem (Timoshenko, S. P. and Woinoesky-
Krieger, S., 1959b). Therefore, the solution for w under the circular
uniform load in this problem is given in Egs. (2) and (3) of this paper
by replacing the characteristic length in Wyman’s solution (Wayman,
1950) with that of Eq.(A-1).

The solution of stress function, F, is induced by first finding the
solution under a ring load, F,. Referring to Fig.A-1, dF, at point Q is

Where x:% l—{

Fig. A-1 Addition theorem
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written in the following equation where point A is subjected to a
concentrated load, P(=¢,¢ ,[d0).

IR
- —% (ker @ +log )d@

T

dF,

»

W =& +E 2 EcosO

Where ¢, is a constant load per unit length on the circle.
Therefore, F, at point Q is expressed by the following equation.

F, =[dF, =- ML” (ker o +log 0)d6
T

where J.” ker wd@ is expressed in Eq.(A-2) using Addition Theorem
0
of ker @ (Watson, 1922).

n(ker & beré —keié beil),
n(ker&beré, —keilbeil ),

$<¢,

£x¢ (A-2)

jo”kera;da:{

I”]Og wd@ 1s expressed in Eq.(A-3) (Moriguchi et al., 1971).
0

zlogg,, &<¢,

rlogs, E3€, 63

J;r logwd = {

Finally, the solution for stress function under ring load, Fr is given by
Eq.(A-4).

—Rlg,,{(kerg berg —keig beid) +1ogs,}, £<¢,
F =

»

(A-4)

—Rlg,& {(beré ker& —beil kei&) +logéy, &2>¢&,

The solution, F, under circular uniform load is given by superimposing
F.to radial direction: ¢~=qdr=qldZ, where g is a constant load per unit
area.

x<¢&

x>¢

dr,, = —RI*q&{(ker berx — keiébeix) + log EYdE,
dF. =—RI*q&{(beréker x — beikeix) + log x}d&,

ro

[0 ar,+ [ ar,. 0sxse,

F (A-5)

frar

ro?

x2>¢&

a

Executing the integration of the right side in Eq.(A-5), Egs.(2) and (3)
in this paper can be obtained.

APPENDIX-2: FLEXURAL STRENGTH OF ICE BEAM

The ice of the shell belongs to T1 snow ice considered to be isotropic
(Michel, 1978). Tensile strength of polycrystalline ice is relatively
strain rate (10 °~10 %sec) and temperature independent (Mellor, 1979).
The flexural strength is also independent from strain rate, temperature
(Sinha et al., 1987) and stress rate (0.1~10 kg/cm?/sec) (Hirayama et al.,
1990). Therefore, a short-term bending experiment with a loading-
period of less than 10 seconds was conducted in order to test the
flexural strength of an ice beam without careful controlled strain rate
and stress rate. As in the construction of ice shells, these ice beams
were made by freezing a mixture of snow and water outdoors in natural
sub-freezing temperatures. The approximate dimensions were 50 cm in
length (L), 8 cm in width () and 4 cm in thickness (/).
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The bending strength o; of the simply supported, centre-loaded ice

beams was computed according to the relationship:

oy
(kg/em®)
30.0
A A‘ A
25.0 D“A
A = o
A e 3
A adh O o
20.0 re p 0 []’Aé]
o A oA AA []‘ A
15.0 PN 'A.ﬁ A
A A [ A Ag * Temp.(-S.X:C)
10.0 i m} Temp.(-4_6ﬂg‘)7
Allowable stress: 0, =3.0kg/cm a Temp_(-3_4ﬂb)
— ® Temp.(-1.4C)
5.0 r/
0.0
0.830 0.840 0.850 0.860 0.870 0.880 0.890  0.900
pi(gen)

Fig. A-2 Flexural strength of simply supported ice beam

o _3PL
T 2bh?

Where P is the force at failure. P was electrically measured with a 100
kg capacity load cell. Fig.A-2 shows the relationship between o and p;,
the density of the ice. Based on the result, 10 kg/cm’ was the smallest
value in this experiment.
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