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ABSTRACT  INTRODUCTION 
  
This paper describes a numerical investigation of structural safety 
where the ice dome is subjected to a concentrated load such as a human 
live load on the apex. Regarding the problem as a short-term loading 
and the elastic behavior of ice, the elastic solution is based on the 
theory of a spherical shallow shell under a small circular uniform load. 
The cases of both single and twin loads on a dome are investigated, 
assuming that the ice dome will break when the tensile stress reaches a 
certain maximum value. Estimating that the weight of a human is 100 
kg and the allowable stress of the ice is 3 kg/cm2, where the flexural 
strength is 10 kg/cm2, it is concluded that the minimum thickness for 
the ice is 6 cm for spans up to 15 m, and 7 cm for spans between 15 m 
and 30 m. It is also true for twin loads when the loading distance is 1 m 
apart. 

Ice shells are being used as winter architectural structures in inland 
Hokkaido, where the volume of snow and sustained sub-freezing 
temperatures make conditions favorable (Kokawa et al., 2000). The ice 
shell creates a beautiful space in the environment from the translucent 
thin plate and the unique curved surface form. The interior space has a 
lunescent atmosphere with full of natural light in daytime, and the 
exterior looks like a gigantic chandelier in the dark at night. As the 
typical example of the applications, since 1997 in Tomamu, many ice 
shells are being used each winter for about 3 months as leisure-
recreational facilities as shown in Fig.1. The construction method of 
blowing snow and spraying water onto an pneumatic formwork has 
constructional rationality (Kokawa, 1985), having taken only one week 
to complete ice domes spanning 20 to 30 meters in the past field 
experiments (Kokawa, 2002). The shell has also high structural 
efficiency, because the form determined from the reticular geometry of 
the covered ropes in the formwork follows automatically so that the 
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                    Fig.1 Ice Shells in Tomamu (2002-2003 winter) 
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Fig.2 Spraying water on ice dome under construction 

membrane stresses are mainly compressive under self-weight load. The 
experimental studies on the structural engineering problems (Kokawa 
and Murakami, 1986; Kokawa, 1988) and the practical applications in 
ice shell construction have been conducted in the winter environment of 
Hokkaido since 1980s. As the result, it is recognized that the ice shell is 
a practical ice structure for winter activities in snowy and cold regions. 
However, there are still engineering problems to be solved concerning 
design, construction, structural safety and maintenance in order to 
realize a reliable structure. The greatest importance are the problems 
concerning structural safety. 
This paper describes a numerical investigation of minimum thickness 
for ice dome under short-term concentrated loading. Workers 
occasionally go up on the ice dome under various situations such as 
snow removal and the water spraying in the construction process as 
shown in Fig.2. In such situation, the minimum thickness of the ice 
should be determined to ensure safety. A local bending stress occurs at 
the vicinity of the concentrated loading point and may cause a fatal 
fracture in the case of a brittle material such as ice. Therefore the 
structural safety of the ice dome must be investigated when the ice 
dome is subjected to a concentrated load such as a human live load on 
the apex. Regarding the problem as a short-term loading and the elastic 
behavior of ice, the elastic solution is based on the theory of a spherical 
shallow shell under a small circular uniform load. The cases of both 
single and twin loads on a dome are numerically investigated, assuming 
that the ice dome will break when the tensile stress reaches a certain 
maximum value. 
 
ELASTIC SOLUTION OF CIRCULAR UNIFORM LOAD 
 
Solution of Vertical Displacement and Stress Function 
The differential equations are given in Eq.(1) where a shallow spherical 
shell is subjected to a uniformly circular load, as shown in Fig.3 
(Timoshenko,S. P. and Woinoesky-Krieger,S., 1959a). 
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Fig.3 Spherical shallow shell under uniformly circular load 
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The solutions of w and F are given by the equations (2) and (3) for each 
region (see APPENDIX-1). 
  
In the region I (x<α), 
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In the region II (x>α), 
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Solution of Bending Moments and Membrane Forces 
The relationship between the bending moments Mr and Mt, the 
membrane forces Nr and Nt, shown in Fig.3 and the displacement w, the 
stress function F, are expressed as follows: 
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Fig. 4 shows the relationship between ks and α where α<0.8. In the 
same way as the problem of a floating ice plate (Kerr, 1976), the ks can 
be very closely approximated by the linear function of α between 0.15 
and 0.35. Eq.(10) shows the straight line connecting (α=0.2, ks=0.8467) 
and (α=0.3, ks=1.0683) where ν=0.3. Using Eq.(10), structural safety 
when human weight of 100 kg is loaded on the ice dome is numerically 
examined as follows: 
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In the region I (x<α),  
Substituting Eq. (2) for Eq.(4), Eqs. (5) and (6) are given as follows: 
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In the region II (x>α),  
Substituting Eq. (3) for Eq.(4), Eqs. (7) and (8) are given as follows: 
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NUMERICAL ANALYSIS 
 
Single Load 
A single uniformly circular load is discussed in this section. Here, the 
maximum tension stress σsmax occurs on the inner surface at the centre 
of the load and σsmax is given by Eq. (9) using Eqs.(5) and (6). 
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Assuming that the shoe size is 10cm × 30cm, the equivalent radius a is 
estimated at 10 cm for the same area. 
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Fig.4 Comparison between ks (Eq. (9) ) and ksA (Eq. (10)) 
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Furthermore, assuming that the open angle of the dome is 120O, the 

final expression of α becomes 　, where D
hDs

93.23
=α s is the diameter of 

the dome at the base. 
Table 1 shows the numerical results where Ds=15 m and 30 m. 
 
Table 1 Numerical result of single load (Pt=100 kg) 

Ds(m) h(cm) α ksA σsmax(kg/cm2)
5 0.276 1.016 3.94 15 
6 0.252 0.962 2.89 
6 0.178 0.799 3.48 30 
7 0.165 0.769 2.65 

  
Here, the compressive membrane stress σc (kg/cm2) is computed 0.37 
kg/cm2 for Ds=15 m and 0.74 kg/cm2 for Ds=30 m based on the 
membrane theory in shell under the gravity load and these σc are 
neglected in the Table 1 for the safety side of the evaluation. According 
to an experiment of ice beams (see APPENDIX-2), the short-term 
flexural strength of the ice is assumed to be 10 kg/cm2. Because good 
quality of ice is produced artificially by the careful application of snow 
by blowing and water by spraying onto a pneumatic membrane, the 
density of the ice becomes about 0.85 g/cm3 polycrystalline ice. If the 
allowable stress is evaluated at 3.0 kg/cm2 and σsmax does not exceed 3 
kg/cm2, it is judged that the dome is thick enough to have structural 
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safety against a short-term bending failure. As a result, the minimum 
thickness of the ice is 6 cm for spans up to 15 m, and 7 cm for spans 
between 15 m and 30 m at the base. 
 
Twin Loads 
The problem where the ice dome is subjected to the same size and 
weight of two circular uniform loads keeping the distance, s, between 
the central points, is discussed here. As seen in the results in previous 
section, the tensile stress on the inner surface of the shell under single 
loading has the following relationship 

rt σσ ≥ , where σt and σr are 
circumferential and radial bending stress, respectively, and the both are 
equal directly below the centre point of the load. The σs or fs(x) , is 
given by the following Eq.(11). 
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Fig.5 shows two curves of fs: one fs(x) and the other fs(x-s). The aim of 
the subject here is to find out the exact maximum value of 
fd(x)(=fs(x)+fs(x-s)) where 0≤x≤s/2. However, comparing the values of 

both ends, ))
2

(2)(
2

())()0()(0( 　　　
sfsfandsff sdssd =+=f , the 

larger one is considered the maximum value fdmax in the twin loading 
problem. As s is clearly larger than 2α, therefore, the following 
Eqs.(12.a-c) are given according to the range of s. 
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Fig.5 Stress distribution under twin loads 

In solving Eq.(12.b), the seq-α curve is found in the region between 

s=2α and s=3α. Therefore, where s , ）（ 3≥= ddα )0()
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( dd fsf <  is 

found.  is given through Eq.(13). )0(df
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Table 2 Numerical result of twin loads (Pt=100 kg) 
Ds(m) h(cm) α d A(d) B(d) kda σdmax(kg/cm2) 

5 2.4766 0.22036 0.844 3.29 15 6 0.252 
10 2.2153 0.36382 0.922 3.01 
5 2.4766 0.22036 0.629 3.24 30 7 0.165 

10 2.2153 0.36382 0.729 2.80 
 

This paper assumed 3 kg/cm2 as the allowable flexural stress in the ice, 
considering that the ice in the dome has a good quality to build up by a 
careful application of blowing snow and spraying water onto a 
formwork and it can be expected the flexural strength of the ice exceeds 
10 kg/cm2 (see Appendix-2). 
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In order to evaluate the minimum thickness of an ice dome in detail 
more, the following two subjects must be investigated in the future.  
(1) The short-term flexural strength of the ice produced by blowing 
snow and spraying water. In accordance with the previous single loading problem, the loading 

coefficient 
)0(

1

d
d f

k =  is approximated through a linear equation of α 

as shown in Eq.(14) 

(2) The initial cracking load and the ultimate failure load of an ice 
dome under a concentrated circular load on the apex. 
 
 

 APPENDIX-1: INDUCEMENT OF ELASTIC SOLUTION 
)()( dBdAkdA += α                 (14)  

The fundamental solutions wf, Ff  under a concentrated load P are given 
by Eq.(A-1) (Timoshenko, S. P. and Woinoesky-Krieger, S.,1959a). 

 
A(d) and B(d) of Eq.(14) are shown in Fig.7a and Fig.7b, respectively, 
and lim  are 2.2160 and 0.4035, respectively 

which agree with the coefficients of  Eq.(10). 
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(A-1) Based on the approximate curve in Fig.(7a,b) and Eq.(14), a numerical 

result is presented in Table 2. 
As seen in the table, it is concluded that the minimum thickness for the 
ice is 6 cm for spans up to 15 m, and 7 cm for spans between 15 m and 
30 m. It is also true for twin loads when the loading distance is 1 m 
apart. 
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CONCLUDING REMARKS And, wf is the solution for vertical displacement in an elastic plate 

under a concentrated load, which is expressed in the same way as the 
solution for Hertz’s problem (Timoshenko, S. P. and Woinoesky-
Krieger, S., 1959b). Therefore, the solution for w under the circular 
uniform load in this problem is given in Eqs. (2) and (3) of this paper 
by replacing the characteristic length in Wyman’s solution (Wayman, 
1950) with that of Eq.(A-1). 

 
This paper described a numerical investigation of structural safety 
when the ice dome is subjected to a concentrated load a human live 
load on the apex. Regarding the problem as a short-term loading and 
the elastic behavior of ice, the elastic solution is based on the theory of 
a spherical shallow shell under a uniformly small circular load. Both 
the cases of single load and twin loads on a dome are investigated, 
assuming that the ice dome will break when the tensile stress reaches a 
certain maximum value. Estimating that the weight of a human is 100 
kg and the allowable stress of the ice is 3 kg/cm2, where the flexural 
strength is 10 kg/cm2, it is concluded that the minimum thickness of the 
ice becomes 6 cm under a 15 m span, and 7 cm over a 15 m up to 30 m 
span, even though the distance is 1 m in case of twin loads. On the 
other side, according to the previous experiments of the reduced models 
of ice dome under a short-term circular load on the apex, the ultimate 
failure loads were found to be higher than the first cracking load 
(Kokawa and Hirasawa, 1982/1983). Therefore, it seems that the 
minimum thickness given in this paper is thick enough to have 
structural safety against the short-term failure. 

The solution of stress function, F, is induced by first finding the 
solution under a ring load, Fr. Referring to Fig.A-1, dFr at point Q is 
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Fig. A-1 Addition theorem 

As the ice thickness of the completed ice dome is normally in the range 
of 12 to 25 cm corresponding to the ice dome’s span ranging from 10 to 
30 m, it is clear that an adequate level of safety will be achieved for the 
subject being addressed because the above-mentioned minimum 
thickness is greatly exceeded. However, as the ice plate during a 
construction work and a removal snow for the maintenance, might be 
thinner than the completion, the proposed simplified formula will be 
useful for checking the structural safety. 
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The bending strength σf of the simply supported, centre-loaded ice 
beams was computed according to the relationship: 

written in the following equation where point A is subjected to a 
concentrated load, P(=qlξ aldθ). 

θωω
π

ξ
d

lRq
dF al

r )log(ker
2

+−=  

θξξξξω cos222
aa −+=  

 
Where ql is a constant load per unit length on the circle. 
Therefore, Fr at point Q is expressed by the following equation. 
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where ∫  is expressed in Eq.(A-2) using Addition Theorem 
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Finally, the solution for stress function under ring load, Fr is given by 
Eq.(A-4). 
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The solution, F, under circular uniform load is given by superimposing 
Fr to radial direction: ql=qdr=qldξ, where q is a constant load per unit 
area. 
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Executing the integration of the right side in Eq.(A-5), Eqs.(2) and (3) 
in this paper can be obtained. 
 
APPENDIX-2: FLEXURAL STRENGTH OF ICE BEAM 
 
The ice of the shell belongs to T1 snow ice considered to be isotropic 
(Michel, 1978). Tensile strength of polycrystalline ice is relatively 
strain rate (10 0~10−6/sec) and temperature independent (Mellor, 1979). 
The flexural strength is also independent from strain rate, temperature 
(Sinha et al., 1987) and stress rate (0.1~10 kg/cm2/sec) (Hirayama et al., 
1990). Therefore, a short-term bending experiment with a loading-
period of less than 10 seconds was conducted in order to test the 
flexural strength of an ice beam without careful controlled strain rate 
and stress rate. As in the construction of ice shells, these ice beams 
were made by freezing a mixture of snow and water outdoors in natural 
sub-freezing temperatures. The approximate dimensions were 50 cm in 
length (L), 8 cm in width (b) and 4 cm in thickness (h). 

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.830 0.840 0.850 0.860 0.870 0.880 0.890 0.900

ρ i (g/cm3)

σ f

(kg/cm2)

Temp.(-8.8℃）

Temp.(-4.6℃）

Temp.(-3.4℃）

Temp.(-1.4℃）
Allowable stress:σ a =3.0kg/cm2

Fig. A-2 Flexural strength of simply supported ice beam 
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Where P is the force at failure. P was electrically measured with a 100 
kg capacity load cell. Fig.A-2 shows the relationship between σf and ρi, 
the density of the ice. Based on the result, 10 kg/cm2 was the smallest 
value in this experiment. 

(A-4)  
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