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ABSTRACT
This paper describes two fundamental studies for the improvement of the ice shell construction.
The one concerns the minimum thickness of ice dome that is subjected to a concentrated load such as a human live load in the
construction process. Regarding the problem as a short-term loading and the elastic behavior of ice, the elastic solution is
based on the theory of a spherical shallow shell under a uniformly small circular load. The cases of both single and twin loads
on a dome are investigated, assuming that the ice dome will break when the maximum tensile stress reaches a certain value.
Estimating that the weight of a human is 100 kg and the allowable stress of the ice is 3 kg/cn’, it is concluded that the
minimum thickness for the ice is 6 cm for spans up to 15 m, and 7 cm for spans between 15 m and 30 m. It is also true for
twin loads when the loading distance is 1 m apart.
The other one concerns optimum amount of water to spray in the construction. As the first step toward this end, it describes
the basic subject of the freezing phenomenon in which a snow-+water layer changes to an ice layer on a horizontal plane. A
thermal equation is made: one that takes into considerations the heat loss from convection, evaporation and radiation on the
surface, and a simple freezing experiment is executed for the quantitative evaluation of that equation. Based on the results, the
average thermal heat transfer coefficient by convection of snow-+water is evaluated as 5.55-10™ cal/(cm’sec°C). The results
indicate that the current method of spraying water can be improved; thus shortening the construction period for an ice shell.

1.INTRODUCTION
Ice shells are being used as winter structures in inland Hokkaido, where the volume of snow and sustained sub-freezing
temperatures make conditions favorable [1]. Since 1997 in Tomamu, many ice shells have been used each winter for about 3
months as leisure-recreational facilities [2]. The construction method of blowing snow and spraying water onto an air-inflated
membrane as formwork has basically constructional rationality [3], having taken only one week to complete ice domes
spanning 20 to 30 meters in previous field experiments [4, 5]. The ice shells also have high structural efficiency, because the
form is determined automatically under uniform pressure and the membrane stresses are mainly compressive. From
experimental studies on the structural engineering problems and the actual applications in ice shell construction conducted in
the winter environment of Hokkaido since 1980s, it is being recognized that the ice shell is a practical structure for winter
activities in cold and snowy regions. However, there are still engineering problems to be solved and improved concerning
design, construction, structural safety and maintenance in order to realize a more reliable structure and advance the
application further.

This paper describes two current study-subjects with regards to engineering problems in the ice shell construction as seen in
Fig.1. The one concerns minimum thickness of ice dome. It describes a numerical investigation of structural safety where the
ice dome is subjected to a concentrated load such as a human live load on the apex. Regarding the problem as a short-term
loading and the elastic behavior of ice, the elastic solution is based on the theory of a spherical shallow shell under a uniformly
small circular load. The cases of both single and twin
loads on a dome are investigated, assuming that the
ice dome will break when the maximum tensile stress
reaches a certain value. The other one concerns a
fundamental study on amount of water to spray in the
ice shell construction. Knowing the optimum amount
of water to spray is an important factor in the
rationality of ice shell construction. As the first step
toward this end, it concerns the basic subject of the
freezing phenomenon in which a snow-+water layer
changes to an ice layer on a horizontal plane. A
thermal equation is made: one that takes into
considerations the heat loss from convection,
evaporation and radiation on the surface, and a
simple freezing experiment is executed for the
quantitative evaluation of that equation.

Fig.1 Spraying water on ice dome under construction

2. MINIMUM THICKNESS OF ICE DOME

Anyone occasionally stands up on the ice dome under various situations like the watering work in the construction process
and the snow removal in the maintenance management process. In such situation, the minimum thickness of the ice should be
determined to ensure safety. A local bending stress occurs at the vicinity of the concentrated loading point and may cause a
fatal fracture in the case of a brittle material such as ice. Therefore the structural safety of the ice dome must be investigated.
This section describes a numerical investigation of structural safety when the ice dome is subjected to a concentrated load such
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as a human live load on the apex. Regarding the problem as a short-term loading and the elastic behavior of ice, the elastic
solution is based on the theory of a spherical shallow shell under a uniformly small circular load. The cases of both single and
twin loads on a dome are numerically investigated, assuming that the weight of a human is 100 kg and the ice dome will break

when the tensile stress reaches 3 kg/cm®.

2-1. Elastic Solution of Uniformly Circular Load

The circumferential stress on the inner surface, o; is given by Eq.(1) where a shallow spherical shell is subjected to a uniformly

circular load as shown in Fig.2 [6].
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the spherical shell, D[=
plate, % is the shell thickness, £ is Young’s modulus, v is
Poisson’s ratio and ¢ is the constant load per unit area over

the circle with radius a.

2-2. Single Load

A single uniformly circular load is discussed here. The
maximum tension stress Gy, occurs on the inner surface
at the centre of the load and oy, is given by Eq. (2) using

Eq.(1).
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Fig.3 shows the relationship between k;and a where 0<0.8.
The k can be very closely approximated by the linear
function of a between 0.15 and 0.35. Eq.(3) shows the

straight line connecting (¢=0.2, k=0.8467) and (¢=0.3,
k=1.0683) where v=0.3.
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2-2-1. Flexural Strength of Ice

To test the flexural strength of an ice beam, a short-term
bending experiment was conducted. As in the construction
of ice shells, the ice beams were made by freezing a
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Fig. 2 Spherical shallow shell under uniformly circular load
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mixture of snow and water outdoors in natural

sub-freezing temperatures. The approximate dimensions (kgf;:nz)
were 50 cm in length (L), 8 cm in width (b) and 4 cm in 30.0
thickness (h). ' s | o
The flexural strength o of the simply supported, 25.0 X . ;
centre-loaded ice beams was computed according to the 200 A A afh B é][]?. * .
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2-2-2. Discussions pi(g/em’)
Using Eq.(3), structural safety when human weight of
100 kg is loaded on the ice dome is numerically Fig 4 Flexural strength of ice beam
examined as follows:

Assuming that the shoe size is 10 cmx30 cm, the equivalent radius « is estimated at 10 cm for the same area.
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Using =03, o =% _-_ % 4f1o1_1?) = -22° Furthermore, assuming that the open angle of the dome is 120°, the
I Rh ( ) ~Rh
final expression of o becomes o= 23.93 | where D;is the diameter of the dome at the base. Table 1 shows the numerical
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s

results where D=15 m and 30 m. Here, the compressive membrane stress o(kg/cm’) is computed 0.37 kg/em” for D=15 m
and 0.74 kg/em® for D=30 m based on the membrane theory in shell under the gravity load and these o, are neglected in the
Table 1 for the safety side of the evaluation. According to the experiment of ice beams mentioned above, the short-term
flexural strength of the ice is 10 kg/em” at the lowest. Because good quality of ice is produced artificially by the careful
application of snow by blowing and water by spraying

onto a pneumatic membrane, the density of the ice  Table 1 Numerical result (P=100kg)

becomes about 0.85 g/cm3 polycrystalline ice. If the Dym) h(cm) a kg 0 som(kg/on)
allowable stress is evaluated at 3.0 kg/om® and Gy 15 5 0276 1.016 3.94
does not exceed 3 kg/cn?, it is judged that the dome is 6 0252 0.962 289
thick enough to have structural safety against a 30 6 0.178 0.799 348
short-term flexural failure. As a result, the minimum 7 0.165 0.769 265
thickness of the ice is 6 cm for spans up to 15 m, and 7
cm for spans between 15 m and 30 m at the base. y

A
2-3. Twin Loads YHFAX)F(K)H(x-5)
The problem where the ice dome is subjected to the 1O+ £i(s)

same size and weight of two circular uniform loads 10)
keeping the distance, s, between the central points, is
discussed here. According to the elastic solution, the
tensile stress on the inner surface of the shell under
single loading has the following relationship &, > &,
where o; and o, are circumferential and radial stress,
respectively, and the both are equal directly below the
centre point of the load. The gyor f{(x), is already given
by Eq.(1).

Fig.5 shows two curves of f;: one f(x) and the other where S>3a : x
f(x-5). The aim of the subject here is to find out the | AO* £(©)*2/(s2) e @)
exact maximum value of fAx)(=f(x)Hf(x-s)) where
0<x<s/2. However, comparing the values of both ends,

2fi(s/2)

e

Fig.5 Stress distribution under twin loads



JiO)= [0+ f,(s)) and  f, (%)(= 2f, (%)), the larger one is considered the maximum value f},,, in the twin loading

problem. As s is clearly larger than 2a, therefore, the following Eqs.(4.a-c) are given according to the range of s.

where  2a <s<s,, fd(%) > 1,000 (4a) where s =s,,, fd(%) = £,(0) (4.5)

where s>s,, f, (%) < £,(0) (4.0)
In solving Eq.(4.b), the s,,—a curve is found in the region between s=2a and s=3a. Therefore, where s =da (d > 3),

/, (g )< £,(0) is found. £,(0) is given through Eq.(5).
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In accordance with the previous single loading problem, the loading coefficient &, = is approximated through a linear

_1
14(0)
equation of ¢ as shown in Eq.(6). k, = A(d)a+B(d) 6)

A(d) and B(d) of Eq.(6) are shown in Fig.6a and Fig.6b, respectively, and }1390 A(d) and }me B(d) are2.2160 and 0.4035,

respectively which agree with the coefficients of Eq.(3). Based on the approximate curve in Fig.(6a,b) and Eq.(6), a
numerical result is presented in Table 2. As seen in the table, it is concluded that the minimum thickness for the ice is 6 cm for
spans up to 15 m, and 7 cm for spans between 15 m and 30 m. It is also true for twin loads when the loading distance is 1 m
apart.
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Table2 Numerical result of twin loads (P=100kg)
Dym) | h(em) a d A(d) B(d) ka Tunalkglom’)

15 6 0.252 5 24766 0.22036 0.844 329
10 22153 0.36382 0.922 3.01
30 7 0.165 5 24766 0.22036 0.629 324

10 22153 0.36382 0.729 2.80




3. OPTIMUM AMOUNT OF WATER TO SPRAY IN CONSTRUCTION

3-1. Current Method

Blowing snow and spraying water onto the ice shell produce a new thin layer of ice, as shown in Fig.7. The snow is blown at
intervals of 45 to 90 minutes, with each application taking from 10 to 30 minutes, depending on the size of the shell and the
meteorological conditions. The snow crushed with a snow blower is a type of sintering snow, with a density and thickness per
application of 0.4~0.5 g/em® and 1 cm or less. As the snow is being blown, water is continuously sprayed through an
adjustable nozzle. The snow absorbs the sprayed water and keeps some of it from running down the sides. Since snow is a
form of ice, it is natural that snow+water freezes faster than water alone; therefore, it is possible to complete a dome in less
time and at higher temperatures by using snow in the construction. Experience shows that the thickness of the ice increases by

about 1 cm every 90 minutes when the outside
temperature is approximately —10°C, and its density is in
the range of 0.83 to 0.88 g/cm’. The thin snow layer must
be saturated, but the amount of water needed varies with
the air temperature. The amount of sprayed water in actual
construction has, for a 10-m dome, the broad range, 14 to
40 //minute. This information is based on the findings from
construction experience up to the present. Considering that
the freezing phenomenon from snow-+water layer to ice
layer can be captured from an engineering standpoint as a
thermal problem, it is an important subject to examine in
order to determine the optimum amount of water to spray
for the constructional rationality.

3-2. Mathematical Formulation

As shown in Fig.7, there is a snow layer with a thickness
of 1 cm and a density of p, (g/cm’), on the previously
produced ice layer. The snow layer becomes a snow-+water
layer when water is sprayed onto it. The amount of water
sprayed must be adjusted corresponding to the variation in
water retentivity caused by the inclination of the dome’s
curved surface; therefore, it must be determined according
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Fig. 7 Application of snow and water

to the angle of gradient & shown in Fig.8. This study, as a start, deals with the freezing process on a horizontal plane 6=0°. In
order to resolve the problem, the following assumptions are made: right after the spraying of water, the temperature of
snow-+water layer is 0°C; there is no change in the weight of either the snow or the water, and there is no heat transfer between
the snow and the water during the freezing process. Then, the freezing phenomenon of the snow+water layer can be
simplified to the freezing phenomenon of just the water in the layer. Since, according to experience, the temperature of water
is in the range of 0 to 5°C and that of the snow is close to the air temperature which is below —10°C, it should be acceptable to
make the above assumption when water spray is regulated for greatest efficiency. When the produced ice density is p{g/cm’),
the amount of water in cm /,, per 1 cm snow thickness is approximately given by Eq.(7).

hy=(p—ps) /0917 7

Where the density of pure ice is 0.917 g/em’ and the density
of the snow blown is p;. Therefore, the problem to be solved
is stated as follows: Find the freezing time for the 0°C
water layer with thickness of /,(<1 cm) to turn to ice.

The thickness of the snow+water layer is less than 1 cm and
the freezing time is within 90 minutes; therefore, the problem
can be treated as a stationary thermal process. As seen in
Fig.8, the freezing phenomenon in the snow+water layer
generally begins at both the inner and outer surfaces.
However, the inner-surface heat loss from conduction is
negligible compared to that of the outer surface. The total
heat loss from the outer surface is stated as follows:

F=C+E+R ®)

F(heat flux)=C(convection)+E(evaporation)+R(radiation)

snow-t+water layer

0 cal from lower layer

exsisting ice layer (temperature of outer layer: 0°C)

Fig.8 General model for thermal exchange



Where C, E and R are the sensible heat flux, evaporation and long-wave radiation, respectively. The sensible heat flux, C
cal/(cm’sec) is given by Eq.(9).

C=u(T,,—T,=—-aT, 9 Where 7, is the outside air temperature (°C); T, is the surface temperature of the

snow-+water layer, which is 0°C; and « (cal/(cm’sec°C)) is the coefficient of heat transfer by convection, given by a linear
equation of wind velocity. Next, the evaporative heat flux £ (cal/(cm’sec)) is given by the following:

E=px(4.58—¢) (10) where £ and e are, respectively, the coefficient of heat transfer by evaporation

(cal/(cm’secmmHg))and the vapor pressure (mmHg) at 7). Assuming that C and E have the same divergence mechanism
expressed by a bulk equation on a water surface and snow surface, the following relationship between a and /5 can be
obtained.

[=2.05%a (11) Then, assuming that the humidity and air temperature, being consistent with

the meteorological data of the inland Hokkaido area where the ice shells are constructed, is 80 % and in the range of —10 and
—20°C, e is approximated by Eq. (12).

=2.683 +0.0966 T, (12) Therefore, C+E=(3.89-1.1987,)  (13)

Since ice shell construction is carried out at night, the heat flux due to radiation under a clear sky, R, (cal/(cm’sec)) is given by
Brunt’s Formula.

R, = 00T, +2732)" =(1, +273.2)" (p+q\Je, )

where ¢ is ice emissivity (=1), o is the Stefan-Boltzman Constant (=1.35-10"%(cal/(cm’sK*)), p=0.53, ¢=0.065, T, is air
temperature (°C), T, is surface temperature (=0°C), e, is the vapor pressure which is 2.0 mb where 7, is in the range of —10 to
—20°C and humidity is approximately 80 %.

Hence p+ q@ =0.62, and the formula is expressed by the following linear equation (14-a) where 7, is in the range of
-10°Cto—20°C.

R~=10"x (29.36-0.576 T,) (cal/(cm’sec)) (14-a)
The net long-wave-radiation under a cloudy sky is given by the following equation.
R=R, (cal/(cm’sec)) (14-b)

where 7 is the decrease coefficient (7=1—k(#/10)), n is the cloudiness on a scale of O(clear) to 10(completely clouded), and &
corresponds to the cloud height (0.85 —low, 0.7 —mid, 0.2 -- high).
Then, the total heat flux F cal/(cm’sec) is given by Eq.(15), using Eq.(8) to (14-a,b).

F={0(3.89-1.198 T,)H29.36-0.576 T,)r}x10™ (cal/(cm’sec))  (15)

where oc=a0><104.

thermometer

3-3. Freezing Experimgnt ) wooden tray (50 cm diameter, 5 mm depth)
Where the angle of gradient is assumed to \ snow-+water

be 0 degrees, that is, retentivity of the

delivered water is 100 %, the coefficient of . J
heat transfer due to convection a is

determined  through the following wooden insulation-board
experiments. Wooden trays of 50 cm
diameter are prepared as shown in Fig.9.
Snow is shaken onto the trays through a
sieve (2.5 mm mesh) and leveled with a
stainless ruler. After calculating the density of the snow p, (g/cm’) from the volume of the tray and the weight of the snow, the
snow-filled tray is left outdoors for several minutes. Next, the water that is 0°C and of the weight ,(g) is sprayed evenly on
the snow. The temperature of the snow+water layer and the time are recorded automatically in order to find the freezing time,
t{sec), which is the time span from the application of the water spray to the point at which the temperature begins to make a

Fig. 9 Method of freezing experiment on horizontal plane



sudden drop, indicating the completion of freezing process. If the ice density p;is selected, the amount of water 7, (g) is given

by Eq.(16).
W= hy*Ss= (pi—ps) xSs/ 0917 (16)
Where p; is snow density and S; is the base area of the tray. For comparison of the freezing behavior, trays filled with water

only, and equal in weight to the snow-+water, were also prepared.
Assuming that the water ,(g) of snow+water becomes ice, the heat loss Ofcal) is expressed as follows:

Or=80W,,(cal) 17

Therefore, the coefficient of heat transfer due to convection ¢ can be obtained based on the following equation.

Q=F x5, a8)

3-4. Results and Discussions Temperature (°C)

Fig.10 shows one of the results of the 2

experiment carried out on the rooftop of the 0

three-story administration building of Hokkaido

Tokai University between 0 and 4 am. on 2

March 13, 2005. Throughout this experiment, 'z —o- Air Temp. °C

the air temperature was in the range of —9 to -4 i .
—10°C, and the wind velocity was very low o = (snow+water) €
(10-minute average wind velocity: 0.18 m/sec, -6 19 —— (water) °C

maximum: 0.34 m/sec, minimum: 0.03 m/sec). 8 m ‘

The coefficient of radiation » =0.15 (k=0.85, W%WW

n=10). The three kinds of time-temperature -10 frRany ‘@rm
curves shown in Fig.10 are the outside air (o, i |

T.), A(snow+water, 7,,0) and B(water, T3, A). -12

Here, the horizontal axis is time (minutes) and 0 20 40 60 80 100 120 140

the vertical axis is temperature (°C). In this
example, the weight of the snow and of the
water for model A snow+water was 390 g and . 00 Ae

4399, respectively. 879 @ of water, which was Fig. 10 Example of results (3/13/05,0:00-4:00)

the same as the total weight in model A, was

used in model B (water only). When 7 reached T, water was sprayed onto the snow. Immediately after the spraying, 7, rose
rapidly and became 0 °C. Then T, remained at 0 °C for 46 minutes, until the rapid drop in temperature that indicates the
completion of freezing process. In contrast, 7 remained at 0 °C for 120 minutes before the temperature drop. The ratio of the
freezing time per unit weight of water between model A and B is 1.45 (=(120/879)/(46/489)). From this, it can be understood
that the coefficient of heat transfer due to convection in model A, 4.59x10™ cal/(cm’sec°C) is 50 % greater than that of model
B, 3.00x10™ cal/(cm’sec °C). The coefficients o calculated from the data of these experiments which were diverse, clearly
show the general tendency of the mean value of o, which is 5.55x10* cal/(cm’sec °C) for snow-+water, and 3.61x 10
cal/(cm’sec °C) for water only.

Using the value of a(=5.55x10"cal/(cm’sec

°C)) , a numerical simulation of freezing

Time (minute)

snow-+water on horizontal plane is made where Ly (minute)
the air temperature is between —10 and —20 °C 60 \
and sky clear. Substituting o,=5.55 and =1 for O p=0.4 g/em’
Eq.(15), the freezing time # (sec) for snow of 1 50 \O\< 0 p=0.5 g/em®
cm thickness is given by Eq.(19). 10 D\D\( A p=0.6 glom
t = 8.724x1057(p’ -p.) (19) 30 ——
(50.95-7.225T)) —— |
20
Based on Eq.(19), Fig.11 shows the freezing 10
time #-(minutes) for snow densities p, (g/em’) of
04, (2.5 and 0.6 where the ice density p; is 0.85 0 T, o)
g/em’, and air temperature 7, is in the range of 10 -1l -12 .13 .14 15 -16 -17 18 -19 20

—10 to —20 °C. Eq. (19) indicates that # is
proportional to (p;—p;) and the ratio of freezing
time for the same air temperature becomes 9 : Fig. 11 Freezing time — air temperature
7 : 5 with accompanying times of 41.1, 31.9 and



22.8 minutes for snow of 1 cm thickness where T, is —15°C. It is clear that the snow density p; greatly affects the freezing
time; therefore, knowing a practical method of preparing high- density snow is a very important factor in the rationality of ice
shell construction. For example, promoting sintering by crushing the snow in a snow blower during the daytime when the air
temperature is relatively high seems to be effective. The standard intensity of delivered water, S,, is the value of 4,, divided by
1, which is the minimum amount of sprayed water per unit time and area needed for continuous freezing on contact. S, is
given by Eq.(20).

5. _h, _F _(50.95-7.225T,) <10 20)
. 80 80

According to Eq.(20), S, has a relationship to 7, but not to p; and p,. Defining total delivered water as the product of the
dome’s surface area and S,, the total delivered water refers to the volume of water per unit time necessary to permeate the
1-cm snow layer, and to freeze continuously, over the entire surface of the dome.

Based on the above, the amount of water sprayed in the present method is numerically examined in the case of a 10-m ice
dome. The surface area of a 10-m ice dome, for example, is about 100 m?. Therefore, the total delivered water is calculated as
9.23(liters/minute) when 7,=—10°C to 14.65 liters/minute when 7,20 °C. However, not all of the sprayed water becomes ice.
Currently, the amount of sprayed water that actually freezes on the dome’s surface during construction is 30 % to 70 %, but it
is hoped that a method for raising the freezing rate (weight of water that freezes on the shell / weight of delivered water) can be
developed in the future. Assuming a rate of 50 %, the two above-mentioned water deliveries are multiplied to become 18.46
liters/minute (—10°C) ~ 29.30 liters/minute (—20°C). Considering the temperature of the sprayed water to be in the range of 0
to 5°C, as stated in 3-2, the freezing time is assumed to be longer than 41 minutes (—10°C) to 26 minutes(—20 °C)where p; is
0.5 g/em’, however, the quantitative evaluation has not yet been verified.

At present, the amount of sprayed water is in the range of 14 to 40 liters/minute for a 10-m dome. However, 40 liters/minute is
too much, even where the air temperature is —20°C. Over-watering seems to be one of the factors in the delay in freezing.
Evaluation of the freezing ratio for an inclined surface should be carried out in the future, but the results of this study indicate
that, with improvement in the water spraying method, the construction period can be shortened.

4. ENDING REMARKS

According to the translucent thin plate and the peculiar curved surface form, the ice shell creates a fantastically beautiful space
in the environment sustained sub-freezing temperatures. The interior space has a brilliant atmosphere with full of natural light
in daytime, and the exterior looks like a gigantic chandelier in the dark at night. The ice shell is used as a temporary structure
for winter activity inland Hokkaido today. However, as the ice shell is a new type of ice structure since 1980s, the solution and
the improvement for various technical problems related to the design, construction, and the control of maintenance are
indispensable so that the ice shell may grow up to the common structure in the future. In addition to the studies described in
this paper, the subjects such as creep property of the ice in the range of 0°C to —5 °C, creep deformation of ice shell,
construction by the snowmaking machine and ice dome construction on frozen lake are being investigated. On the other side,
as the ice shell can be constructed easily at any place if there are the severe cold, snow and water, the shell has a possibility to
become a useful structure common in not only inland Hokkaido but also the severe cold regions all over the world such as
Canada, Alaska, Northeast China, North Scandinavian, Russia and the South Pole. The author would like to hope for the new
development of the usage and the expansion of application in those areas.
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