Shape and Creep Deflection Analysis of Ice Dome
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Abstract

According to the shape and the creep deflection analysis of an axisymmetric ice dome, a non-spherical ice dome improves
significantly the structural performance compared to the conventional type of spherical dome. The analysis of an axisymmetric ice
dome is based on the followings: membrane theory for a thin shell and invariant theory for the ice obeyed Glen’s law during the
secondary creep stage. In addition to the numerical results of the analysis, the past construction experiences and the field experiments
of 20-30m span ice domes would support the realization of a huge ice dome spanning 40 meters never existed before, which has
almost same size as Pantheon in Rome well known as one of the biggest classical stone dome.
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1 Introduction

Ice shells, which are thin curved plate-structures made of ice, are being used as winter structures in inland Hokkaido with sufficient
snow and low temperature [1]. As the typical example of the applications, since 1997 in Tomamu, many ice shells are being used
each winter for about 3 months as leisure-recreational facilities after skiing. The shell creates a beautiful space in the environment
from the translucent thin plate and the unique curved surface shape. The interior space has a translucent atmosphere with full of
natural light in daytime, and the exterior looks like a gigantic illuminator in the dark at night. The shell has also high structural
efficiency, because the shape determined from the reticular geometry of the covered ropes on a pneumatic membrane follows
automatically so that it works mainly compressive stress under self-weight load. Furthermore, the construction method of blowing
snow and spraying water onto the pneumatic formwork has constructional rationality. Through these advantages, it is recognized that
the ice shell is a practical ice structure for winter activities in inland Hokkaido.

According to the ice shell construction experiences so far, Ice shell has a tendency to creep easily with time even if the working stress
is small. Large creep deformations end the dome’s usability as an architectural structure, and cause instability leading to collapse.
Therefore, it is very important to reduce the creep deformation for the durability of ice shells. The investigations have been carried
out through the field experiments of ice domes with spans from 10 to 30-meters where the meteorological conditions such as outside
air temperature, humidity, radiation, wind, snowfall and the accumulated load of snow on the dome vary [2][3][4][5]. The results led
to a simplified formula that can predict the creep deformation of a spherical ice dome where the ice temperature is in the range of 0°C
to —5°C [6].

This paper develops the shape and the creep deflection analysis of an axisymmetric ice dome based on the following assumptions:
membrane theory for a thin shell and invariant theory for the ice obeyed Glen’s law during the secondary creep stage [7][8][9]. The
result shows that a non-spherical ice dome reduces significantly the creep deformations compared to that of the conventional type of
spherical dome.

2 Theoretical consideration on shape and creep deflection

So far, a spherical cap is often used as the shape of ice dome. However, in the case of a large span such as Ice Pantheon, a large creep
deformation may occur under gravity load. The large deformation is not good for the structural stability. "Form follows force" as one
says, and a non-spherical shape might be able to reduce the amount of creep deformation. That might enhances the structural
performance of the ice dome.
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2.1 Shape analysis

The shape analysis of a non-spherical ice dome is based on membrane theory for a thin shell [2]. Let us consider a dome of
nonuniform thickness supporting its own weight. Fig.1 shows an element of a dome that is cut by two adjacent meridians and two
parallel circles. The weight of the dome per unit area of the middle surface is ph, and the two components of this weight along the

coordinate axes are
p, = phsing p, = phcosep (6]

Where p is the density of ice and /4 is the ice thickness.
The equation of equilibrium in the radial direction is
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Where N are the magnitudes of the membrane forces per unit length as
@ 2

shown in the Fig. 1.  Let’s assume that N,,, N, are given in advance by Eq. (3 ).
N(p = _Gahf(p (w)’ Nt9 = _O-ohfﬂ ((0) (3)
Where g, is the compressive stress at the apex of the dome, and f, fy are the

distribution function of the membrane forces along the coordinate axes. f,, 1,
are functions of ¢ and 1 for ¢=0. Substituting Eq. (1) and (3) into Eq.(2),

Fig.1 Membrane stress and external load
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Using Eq. (4), . dr  asshown in Fig.1, Eq.(5) forms a first order of differential equation for f.
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Under the initial condition that ﬁ -9 for 90 the numerical solution of Eq. (5) can be calculated by applying
do ’
Runge-Kutta Method. Using the numerical value of f, z and » of the dome’ shape are computed numerically based on Eq. (6)
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Next, the thickness of the ice / is derived as follows. The equation of the equilibrium in the meridian direction is

d(N,r)
do

- N,r,cosp+p,rr=0 )

Substituting N,=-o,hf,, N,=-o,hf, and p,6 = phsing into Eq. (7), Eq. (8) is obtained.

1do (/= 1,)eosp+ psing
Odp  Bcose— f,sing

R where QO =1f, ®)

Solving Eq. (8) and placing O=Q, (=h,) for p=¢,—0, h becomes Eq. (9).
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Where 4, is the thickness at the apex of the dome.
2.2 Creep deflection

The creep model for the ice is assumed to be obeyed Glen’s law during the
secondary creep [3].

ﬁzézka" (10)

Where o is uniaxial stress, & is uniaxial strain rate and k, » is constant.
Strain-displacement relation is shown in Eq. (11).
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Where /+ _ i , w is the displacement in the radial direction, v is the
do

displacement in the meridian direction, as shown Fig.2, g, is strain in the parallel Fig.2 Displacement and geometry of dome
direction and ¢, is strain in the meridian direction. The relationship between the
strain rate and the membrane stress is written in Eq. (12) by applying invariant

theory [4].
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Eliminating w in Eq. (11) and using Eq. (12), Eq. (13) forms the first order of ordinary differential equation for v .
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The general solution of Eq.(13) is , _ i (D{K F(¢7) do+ C} (14)
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Where C is a constant of integration to be determined from the condition at the support. Using the v in Eq. (14), W is written in
Eq. (15)
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The vertical displacement rate SV shown in Fig. 2, is expressed by Eq. (16).

0, =vsing + wcosg (16)



The constant C is determined from the condition that for p=y,, the vertical displacement rate 5'V is zero.
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Where Vis V for p=y.

Therefore, 5v and the horizontal displacement rate 5 y = —VCOoS @+ wsin @ are written as follows.
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into Eq.(18), SH and Sv are written in Eq. (19).
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2.3 Numerical results for Ice Pantheon Dome
The stress distribution of the membrane forces is given in the 0 0102030405060.70809 1
following. - : [P (Ice Pantheon Dome)
-2 fo=2 cos(x )—;
* Tt cos(iz) Y restr)) 0 mm===- : S (Spherical Dome)

Where x=2, y=63435°
X Fig. 3 Distribution of membrane stress



The numerical results show a spherical dome of uniform thickness, called S dome. In the case of Ice pantheon dome (IP dome), the
following stress distributions are adopted under the condition of the same rise/(base diameter) as the S dome above mentioned.
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Fig. 4 and Fig. 5 show the numerical results of these shape analysis. In addition, the creep displacement of IP dome is very small
compared to that of S dome as shown in Table 1. From these results, IP dome improves significantly the structural performance such
as creep deflection and magnitude of stress compared to S dome. In the case of IP dome spanning 40 m, ooy is 7.5 N/em? under its
own weight using = 2.123, p=0.85 g/cm® and r=20 m in Eq. (5). The value of the gop corresponds to about 1/50th of the uniaxial
compressive strength of ice. Therefore, the construction of IP dome spanning 40m has enough strength to stand theoretically.
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Fig. 4 Meridian curve of dome Fig. 5 Distribution of thickness

Table 1 Comparisons of displacement rate and stress between S and IP dome

n (see Eq.(10)) (Svip/Ovs)average (Svip/Ovs)apex (gorr/o0s)
1 0.388 0.463
2 0.263 0.344 0.842
3 0.172 0.244

Jyrp: vertical displacement rate of I[P dome, dys. vertical displacement rate of S dome
(Oyip/Ovs)average: Ratio of average dyip to average dys, (dvip/Oys)apex: Ratio of dyppat apex to dyg at apex
oorp: 0o in IP dome, ops: 0 in S dome

3 Ending remarks

According to the shape and the creep deflection analysis of an axisymmetric ice dome based on membrane theory for a thin shell and
invariant theory for the ice obeyed Glen’s law during the creep, the non-spherical ice dome improves significantly the structural
performance compared to the conventional type of spherical dome. In addition to the numerical result of the analysis in this paper, the
past construction experiences and field experiments of 20-30m span ice domes would support the realization of a huge ice dome
spanning 40 meters never existed before, which has almost same size as Pantheon in Rome well known as one of the biggest classical
stone dome. The ice dome is easier to construct than stone dome and the strength/density of the ice is almost same as that of stone in



short term loading, so it could be possible for students as amateur to construct a 40m-span ice dome if they gradually experience the
construction from small domes. Towards the realization of the ice dome, so called ‘Ice Pantheon’, the students of Tokai University
started to go on an exciting, thrilling and wonderful voyage under the technical guidance by the authors. In winter of 2009, as the
first step toward this end, a small size of 10-m span ice dome was constructed. And then, in last winter of 2010, the students
constructed a non-spherical 15-m span ice dome [10].
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