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概要 
 

自重下において、経線方向と緯線方向の膜応力分布が指定された軸対称アイスドームの曲面形状と氷厚分布をシェルの

膜理論に基づいて求める数値解析方法を示した。さらに、氷材料の歪速度と一軸応力の関係式が Glen の法則に従うと仮

定して、そのアイスドームのクリープ変形量を不変量理論とシェルの膜理論に基づいて求める解析方法を展開した。以

上の方法に基づいて、半開角 63.4°の部分球面を基準曲面形状とし、その中央点高さ／底面直径（＝0.309）を同一と

する軸対称曲面を対象に数値計算を実施し、従来より用いられてきた球形曲面の場合に比べてクリープ変形を少なくし

て膜応力を小さくする非球形アイスドームの曲面形状と氷厚分布を例示した。この解析的検討と既往の 20～30ｍ級球形

アイスドームのフィールド実験結果及び 100 を超えるアイスシェルの建設経験は，目下進行中の東海大学・アイスパン

テオンプロジェクトにおいて最終的に目指す 40ｍ級の巨大アイスドームの実現に確信的根拠を与えるものと思われる。 

 
Abstract 
According to the shape and the creep deflection analysis of an axisymmetric ice dome, a non-spherical ice dome improves 
significantly the structural performance compared to the conventional type of spherical dome. The analysis of an axisymmetric ice 
dome is based on the followings: membrane theory for a thin shell and invariant theory for the ice obeyed Glen’s law during the 
secondary creep stage. In addition to the numerical results of the analysis, the past construction experiences and the field experiments 
of 20-30m span ice domes would support the realization of a huge ice dome spanning 40 meters never existed before, which has 
almost same size as Pantheon in Rome well known as one of the biggest classical stone dome.  
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1 Introduction 

Ice shells, which are thin curved plate-structures made of ice, are being used as winter structures in inland Hokkaido with sufficient 
snow and low temperature [1]. As the typical example of the applications, since 1997 in Tomamu, many ice shells are being used 
each winter for about 3 months as leisure-recreational facilities after skiing. The shell creates a beautiful space in the environment 
from the translucent thin plate and the unique curved surface shape. The interior space has a translucent atmosphere with full of 
natural light in daytime, and the exterior looks like a gigantic illuminator in the dark at night. The shell has also high structural 
efficiency, because the shape determined from the reticular geometry of the covered ropes on a pneumatic membrane follows 
automatically so that it works mainly compressive stress under self-weight load. Furthermore, the construction method of blowing 
snow and spraying water onto the pneumatic formwork has constructional rationality. Through these advantages, it is recognized that 
the ice shell is a practical ice structure for winter activities in inland Hokkaido.  
According to the ice shell construction experiences so far, Ice shell has a tendency to creep easily with time even if the working stress 
is small. Large creep deformations end the dome’s usability as an architectural structure, and cause instability leading to collapse. 
Therefore, it is very important to reduce the creep deformation for the durability of ice shells. The investigations have been carried 
out through the field experiments of ice domes with spans from 10 to 30-meters where the meteorological conditions such as outside 
air temperature, humidity, radiation, wind, snowfall and the accumulated load of snow on the dome vary [2][3][4][5]. The results led 
to a simplified formula that can predict the creep deformation of a spherical ice dome where the ice temperature is in the range of 0oC 
to −5oC [6].  
This paper develops the shape and the creep deflection analysis of an axisymmetric ice dome based on the following assumptions: 
membrane theory for a thin shell and invariant theory for the ice obeyed Glen’s law during the secondary creep stage [7][8][9]. The 
result shows that a non-spherical ice dome reduces significantly the creep deformations compared to that of the conventional type of 
spherical dome.  
 
2 Theoretical consideration on shape and creep deflection 
So far, a spherical cap is often used as the shape of ice dome. However, in the case of a large span such as Ice Pantheon, a large creep 
deformation may occur under gravity load. The large deformation is not good for the structural stability. "Form follows force" as one  
says, and a non-spherical shape might be able to reduce the amount of creep deformation. That might enhances the structural 
performance of the ice dome. 
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2.1 Shape analysis 
The shape analysis of a non-spherical ice dome is based on membrane theory for a thin shell [2]. Let us consider a dome of 
nonuniform thickness supporting its own weight. Fig.1 shows an element of a dome that is cut by two adjacent meridians and two 
parallel circles. The weight of the dome per unit area of the middle surface is hρ , and the two components of this weight along the 

coordinate axes are  
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Where ρ is the density of ice and h is the ice thickness. 
The equation of equilibrium in the radial direction is  
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Where  are the magnitudes of the membrane forces per unit length as 

shown in the Fig. 1.  Let’s assume that N
ϑϕ NN ,

φ, Nθ are given in advance by Eq. (3 ). 
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Where σo is the compressive stress at the apex of the dome, and fφ, fθ  are the 
distribution function of the membrane forces along the coordinate axes. fφ, fθ 
are functions of φ and 1 for φ=0.  Substituting Eq. (1) and (3) into Eq.(2), 

Fig.1 Membrane stress and external load 
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Using Eq. (4), 

　
 as shown in Fig.1, Eq.(5) forms a first order of differential equation for β. 
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Under the initial condition that  　the numerical solution of Eq. (5) can be calculated by applying  

Runge-Kutta Method. Using the numerical value of β, z and r of the dome’ shape are computed numerically based on Eq. (6)  
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Next, the thickness of the ice h is derived as follows. The equation of the equilibrium in the meridian direction is  
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Substituting ϕρσσ ϕθθϕϕ sin, hpandhfNhfN oo =−=−= 　　　  into Eq. (7), Eq. (8) is obtained. 
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Solving Eq. (8) and placing Q=Qo (=ho) for φ=φo→0, h becomes Eq. (9). 
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Where ho is the thickness at the apex of the dome. 
 
2.2 Creep deflection 
The creep model for the ice is assumed to be obeyed Glen’s law during the 
secondary creep [3]. 
 

nk
dt
d σεε

== &                           (10） 

 
Where σ is uniaxial stress, ε&  is uniaxial strain rate and k, n is constant. 
Strain-displacement relation is shown in Eq. (11). 
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Where 

ϕd
d

=′　 , w is the displacement in the radial direction, v is the 

displacement in the meridian direction, as shown Fig.2, εθ is strain in the parallel 
direction and εφ is strain in the meridian direction. The relationship between the 
strain rate and the membrane stress is written in Eq. (12) by applying invariant 
theory [4].  
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Fig.2 Displacement and geometry of dome 
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Eliminating w in Eq. (11) and using Eq. (12), Eq. (13) forms the first order of ordinary differential equation for . v&
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The general solution of Eq.(13) is ( )
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Where C is a constant of integration to be determined from the condition at the support. Using the  in Eq. (14),  is written in 
Eq. (15) 
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The vertical displacement rate  shown in Fig. 2, is expressed by Eq. (16). 

Vδ&
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The constant C is determined from the condition that for φ=χ,, the vertical displacement rate is zero. vδ&
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Where ∇ is for φ=χ. ∇
Therefore, and the horizontal displacement rate  are written as follows. vδ& ϕϕδ sincos wvH &&& +−=
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And then substituting  
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into Eq.(18),  and  are written in Eq. (19). Hδ& vδ&
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The displacement rate at the apex is 
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The average vertical displacement rate  is 
Vavδ&
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2.3 Numerical results for Ice Pantheon Dome 
The stress distribution of the membrane forces is given in the 
following. 
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Fig. 3 Distribution of membrane stress 

  



The numerical results show a spherical dome of uniform thickness, called S dome. In the case of Ice pantheon dome (IP dome), the 
following stress distributions are adopted under the condition of the same rise/(base diameter) as the S dome above mentioned.  
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Fig. 4 and Fig. 5 show the numerical results of these shape analysis. In addition, the creep displacement of IP dome is very small 
compared to that of S dome as shown in Table 1. From these results, IP dome improves significantly the structural performance such 
as creep deflection and magnitude of stress compared to S dome. In the case of IP dome spanning 40 m, σOIP is 7.5 N/cm2 under its 
own weight using β = 2.123, ρ=0.85 g/cm3  and r=20 m in Eq. (5). The value of the σOIP corresponds to about 1/50th of the uniaxial 
compressive strength of ice. Therefore, the construction of IP dome spanning 40m has enough strength to stand theoretically.  
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Table 1 Comparisons of displacement rate and stress between S and IP dome  
n (see Eq.(10)) (δVIP/δVS)average (δVIP/δVS)apex (σOIP/σOS) 

1 0.388 0.463 
2 0.263 0.344 
3 0.172 0.244 

 
0.842 

δVIP: vertical displacement rate of IP dome, δVS: vertical displacement rate of S dome 
(δVIP/δVS)average: Ratio of average δVIP to average δVS, (δVIP/δVS)apex: Ratio of δVIP at apex to δVS at apex 
σOIP: σO in IP dome, σOS: σO in S dome 

3 Ending remarks 
According to the shape and the creep deflection analysis of an axisymmetric ice dome based on membrane theory for a thin shell and 
invariant theory for the ice obeyed Glen’s law during the creep, the non-spherical ice dome improves significantly the structural 
performance compared to the conventional type of spherical dome. In addition to the numerical result of the analysis in this paper, the 
past construction experiences and field experiments of 20-30m span ice domes would support the realization of a huge ice dome 
spanning 40 meters never existed before, which has almost same size as Pantheon in Rome well known as one of the biggest classical 
stone dome. The ice dome is easier to construct than stone dome and the strength/density of the ice is almost same as that of stone in 

  



  

short term loading, so it could be possible for students as amateur to construct a 40m-span ice dome if they gradually experience the 
construction from small domes. Towards the realization of the ice dome, so called ‘Ice Pantheon’, the students of Tokai University 
started to go on an exciting, thrilling and wonderful voyage under the technical guidance by the authors. In winter of 2009, as the 
first step toward this end, a small size of 10-m span ice dome was constructed. And then, in last winter of 2010, the students 
constructed a non-spherical 15-m span ice dome [10]. 
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