
 
 

2010 年度日本建築学会 
関東支部研究発表会  

アイスドームの形状・クリープ変形解析 
 

2 構造－6シェル・空間構造 正会員  粉川 牧
＊１

 

    
アイスドーム 形状解析 クリープ変形解析  
膜理論 グレンの法則 不変量理論  
 

  

dθ 

dφ 

pφ pn 

Nφ 

Nφ+dNφ 

Nθ 

Nθ 
φ 

r 

r2 

r1 

１．はじめに 

氷を構造材料とする薄肉の曲面板構造体‘アイスシェル’

が厳寒多雪地域の北海道内陸部において冬のテンポラリ

ーストラクチャーとして活用されている１)．建設される

シェルはその多くが軸対称形ドームで底面直径が 15ｍ

以下のものに限られている．一方で，実験的には30m級

までのアイスドームが試作され2),３)，その空間規模の拡

大化が図られようとしている．巨大アイスドームの実施

適用において，クリープに対する構造挙動の理解が極め

て重要である．アイスシェルはその境界が剛支持される

ため自重型荷重下において膜応力状態にあり力学的合理

性が高く，その作用応力は40ｍ級のアイスドームの場合

であっても氷の短期圧縮強度の1/40～1/50と小さく，強

度的に十分な安全性を有している．しかし，氷は極めて

クリープし易い材料で 4），時間の経過とともに増大する

クリープ変形は建築空間としての使用を制限しさらには

崩壊の引き金になることが考えられ 5），特に巨大アイス

ドームではクリープ変形量をなるべく少なくすることが

耐久性の向上に寄与するものと思われる．そこで，今ま

で用いられてきた球形曲面・一様厚の場合に比べてクリ

ープ変形を少なくして膜応力を小さくする非球形アイス

ドームの曲面形状と氷厚分布を解析的に求める方法を開

発した．即ち，自重下において，経線方向と緯線方向の

膜応力分布が指定された軸対称アイスドームの曲面形状

と氷厚分布をシェルの膜理論6）に基づいて数値的に求め

る方法を示し，さらに，氷材料の歪速度と一軸応力の関

係式が Glen の法則 7）に従うと仮定して，そのアイスド

ームのクリープ変形量を不変量理論8）とシェルの膜理論

に基づいて求める解析方法を展開した． 

２．形状解析 

自重下における緯線方向，経線方向の膜応力を指定した

時の軸対称シェルの曲面形状を以下のようにして求める． 
軸対称曲面の法線方向の力の釣り合い式は，図1を参照

して，
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図1 軸対称シェルの膜応力 

式（1）で与えられる 6)． 
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，Nφ, Nθ はそれぞれ経線方向，緯線方向の単位幅

の応力を表し，式（2）で与える． 
)(),( oo ϕσϕσ θθϕ hfNhf −=　　  (2) 

，－σoはドーム頂点における単位断面積に生ずる

応力，fφ,, fθは応力分布, hは板厚をそれぞれ表し，

数で与えられる．ここで，φ=0 のとき，

1)0( == θf とする．自重下において，pn=ρhcosφ 

され，これと式（2）を式（1）に代入すると， 
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， ρ は材料密度を表す．式（ 3 ）は
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ϕ
βϕ

d
d  のもと

nge-Kutta 法 を用いて数値的に求まる．曲面形
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状をx ，z座標値で表わすと（図2参照）,それぞれ 
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従って，αzはβを既知として，式（5）を数値積分して，

αx は式（6）より ϕβ で求められる． 

次に氷厚hを求める．経線方向の力の釣り合い式は式（7）
で与えられる． 
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式（7）に Nφ=－σohfφ ， Nθ=－σohfθ  と pφ=ρhsinφ を代

入して，式（8）を得る． 
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式(8) をφ=φo→0 に対してQ=Qo (=ho) の条件で解くと 
h は式(9)となる．. 
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ここで，ho はドーム頂点のシェル厚.を示す． 

3. クリープ変形解析 

氷の一軸応力下における歪速度 )(ε& －応力（σ）関係を

Glen’s law7)で表わす． 

nk
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d σεε

== &      (10) ここに k, n は定数． 

シェルの歪と変位は式（11）で表わされる． 

　　　　　　

　　　　　

1

2

cotsincos

r
wv

r
wv

r
wv

−′
=

−
=

−
=

ϕ

θ

ε

ϕϕϕε
    (11) 

ここに図2を参照して， 
ϕd
d

=′　 ,  w，v は法線方向，

経線方向変位を， εθ，εφ は緯線，経線方向歪度を表わ

している．一方，歪速度－応力関係式は，不変量理論 8)

を適用して，式（12）表わされる． 
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式（11）の

微分式(方

)13.(..........

cot

2=

−′

σ

ϕ

ϕfrk

F
vv

n
o

&&

ここに　

式（13）の

ここで，未

式(14)にお

2

cot



+

=

n
o fkr

vw

σ

ϕ&&

図2に示さ

δ sinvV && =
支持点 φ=

数Cを決め

  
v&

( )
( )

)

図2 軸対称シェルの形状と変位 

 w を消去し，式 (12)を用いて, の1階常

程式(13) を得る． 
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定係数 C  は支持条件によって決定される． 
ける  を用いると，  は式 (15)となる． v& w&
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れる鉛直変位速度 は式(16)で与えられる. 
Vδ&

ϕϕ cosw&+               (16) 

χ において鉛直変位速度 ＝0として未定係

る． 
vδ&



 
 

2010 年度日本建築学会 
関東支部研究発表会  

( ) ( ) χσϕ
ϕ
ϕ

θθϕϕϕθ

χ
cos

2
1

sin
2

1
22

20

−

+−





 −−−=∴ ∫

n
n

o ffffffkrdFC

………………(17) 

Sドームと同一の中央点高さ／底面直径（＝0.309）を有

する軸対称ドームの形状解析では fφ, fθを式（22）で与

えて数値計算を実行した．その結果得られたドームをIP

ドームと名づける． ここに∇はφ=χ のときの∇の値． 
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は式（18）で与えられる． 
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式（21），（22）を図示すると図3になる．これらの与え

られた応力から解析して導かれた図4,5は両ドームの曲

式（18）より頂点変位速度 は 
Vtopδ&

(

( )







−

−





 −−

=∴

∫
χ

ϕϕϕθ

ϕϕ

β
σδα

0

2

2
11

dE

ffff
k n

otopV
&

Vaδ&ドーム全体の平均鉛直変位速度 

( )

∫
∫

∫
∫ == χ

χ

χ

χ

ϕ

ϕδ

ϕπ

ϕπδ
δ

0 1

10

0 1

10

2

2

drr

drr

drr

drr VV

avV

&&
&  

 

４．数値解析例 

膜応力分布 fφ, fθ を式（21）で与え

いて数値計算を行うと，解は理論解

部分球面・一様厚と一致した．以下

Sドームと名づける． 
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面形状と氷厚分布の比較を示している． 表は両ドームの

力学的性状の比較をクリープ指数n＝1，2，3（式（10）

参照）に対して示したもので，IPドームは従来より用い
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，本解析方法に

の半開角63.435

にて，このドー

( )xcos
1





+ χ

,    (21
られているSドーム比べてクリープ変形を格段に少なく

して膜応力を小さくすることが示された． 
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図3 膜応力分布の比較 
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    図４ ドーム曲面形状の比較     図5 ドーム氷厚分布の比較 

 
表 変位速度と応力の比較  

n (式.(10)) (δVIP/δVS)average (δVIP/δVS)apex (σOIP/σOS) 
1 0.388 0.463 
2 0.263 0.344 
3 0.172 0.244

 
0.842 

δVIP: IPドームの鉛直変位速度,  δVS: Sドームの鉛直変位速度 
(δVIP/δVS)average: （δVIPの平均値）/（δVSの平均値）, (δVIP/δVS)apex:ドーム頂点におけるδVIP /δVS  
σOIP: IPドーム頂点の応力, σOS: Sドーム頂点の応力 
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5. おわりに 

数値解析例で示した IP ドームの形状は目下進行中の東
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クトにおいて適用されている 9）．このプロジェクトでは
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のパンテオンの規模に匹敵する 40ｍ級のアイスドーム

建設の実現を目指している．この場合，計算上，頂点圧

縮応力度σOIPは自重下において 7.5 N/cm2 となる．この

値は氷の圧縮強度の約 1/50～1/60 に相当し，クリープ

変形量は従来の球形ドームに比べて格段に少なくなる．

既往の 20～30ｍ級球形アイスドームのフィールド実験

結果と100を超えるアイスシェルの建設経験に加えて本
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