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Abstract 
This paper proposes a new structural system for the Retractable Loop-Dome (RLD) that comprises a 
main structure and a substructure. The main structure consists of 3-dimensional multi-angulated 
scissor elements (3-DMASEs) in lamella arrangement. The substructure comprises a part of an 
Aspension Dome, an outer tension cable disposed concentrically around the peripheral border and 
zigzag cables in a ring of quadrilaterals of the lamella. The Aspension Dome part, the central part of 
the RLD, comprises hoop cables, diagonal cables and posts. 3-DMASEs, posts and diagonal cables 
are fixed members. All members are always under stress while keeping the equilibrium of the RLD 
by simultaneously adjusting the length and the tension forces of the hoop cables, the outer tension 
cable and the zigzag cables. The tension forces of these cables are determined numerically by 
solving a nonlinear programming problem subjected to constraints. 
 
Keywords: retractable loop-dome, 3-dimensional multi-angulated scissor element, main structure, 
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1 Introduction 
In the preceding papers [1][2], the author proposed the retractable loop-dome (RLD) that 
continuously changes in shape according to variations in the diameter of the oculus. The main 
structural elements of the RLD are 3-dimensional multi-angulated scissor elements (3-DMASEs) in 
lamella arrangement. The geometric form of the scissor element is determined by cutting a sphere 
with an inclined plane that intersects the apex. The pivots of the scissor elements form a perfect 
circle at each level, and are arranged at an equiangular degree around the axis of the dome. The 
scissor pivot-axes coincide with the normals of the spherical surface. The main structure of the RLD 
consists of two sets of 3-DMASEs, one set running clockwise and the other counterclockwise from 
the center. This allows the changes in the geometry of the structure, particularly the diameter of the 
oculus, without elastic deformation of the elements. During the retraction, a small variation in angle 
is caused by a slight difference between the scissor pivot-axis and the hole-axis, necessitating a 
loose-hole or an embedded spherical roller bearing (or self-aligning ball bearings) at the scissor pivot. 
In order to apply the main structure for practical use, the structure must be made stable. Therefore, a 
structural system in which an expandable ring is added to both the inner and outer circle of the main 
structure, so as to produce the structural efficiency of shell-like behavior, was proposed [1][2]. 
However, in the proposal, there was a problem in making the inner ring actual because of a large 
expansion-traction ratio and action in high compression despite using telescopic cylinder rods. 
This paper briefly describes the three ideas considered thus far in the development of a structural 
system for the RLD. Comparing them from the aspect of constructional and structural rationality, 
one appears to have the most potential for allowing the realization of the RLD. This newest 
structural system comprises the main structure and a substructure. The substructure comprises a part 
of an Aspension Dome [3], an outer tension cable disposed concentrically around the peripheral 
border of the main structure and zigzag cables in a ring of quadrilaterals of the lamella. The 
Aspension Dome part, the central part of the RLD, comprises hoop cables, diagonal cables and posts. 
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Fig.1 Position of scissor points 

 

The 3-DMASEs, posts and diagonal cables are fixed 
members. Those members are always under stress while 
keeping the equilibrium of the RLD by simultaneously 
adjusting the length and the tension forces of the hoop 
cables, the outer tension cable and the zigzag cables. 
Based on the structural analysis developed in this paper, 
the tension forces of those cables are determined 
numerically by solving a nonlinear programming 
problem subjected to constraints. Some numerical 
examples are shown. 
 
2 Main structure 
The main structure of the RLD consists of 3-DMASEs in 
lamella arrangement. The geometric form of the 3-
DMASE is determined by cutting a sphere with a plane. 
The scissor hinge-points (1, 2, …, i, i+1, ..., n) of the 
element are arranged on the surface of a sphere S as 
follows: 
a) Cutting sphere S with inclined plane P that intersects 

apex T, as shown in Fig. 1(a). 

b) Arranging hinge-points on circle Q (ellipse on the xy 
plane), as shown in Fig. 1(b). That is, θ2−θ1= θ3−θ2= 
…= θ(i+1)−θi=…= θn−θ(n-1)= ∆θ on xy plane. 
Referring to Fig.1 and denoting a changing form 
parameter t explained in the previous paper [1], 3-
dimensional coordinate of a scissor point i which is 
written ‘node (point) i’ in the following, is given by 
Eq.(1). 

When t=0, it is called ‘the reference state’, the scissor 
pivot-axes coincide with the normals of the spherical 
surface. The main structure of the RLD consists of two 
sets of 3-DMASEs, one set running clockwise and the other counterclockwise from the center. This 
allows the changes in the geometry of the structure, particularly the diameter of the oculus as shown 
in Fig.2, without elastic deformation of the elements. 
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3 Proposed structural systems 
In order to apply the main structure for practical use, the 
structure must be made stable. The problem lies in 
establishing a rational structural system for a large span, 
considering the expansion-traction technology of today. The 
two ideas previously put forth concerning the structural 
system of the RLD, along with the new idea, are described as 
follows. 

 
inner ring 

outer ring  
3.1 System A (main structure + (inner+outer) 
expandable ring) Fig.3 System A 
As shown in Fig. 3, system A, an expandable ring is added to 
both the inner and outer circles of the dome so as to produce 
the structural efficiency of shell-like behavior under dead 
load. Each expandable circular ring consists of expandable 
rods that form a regular polygon. In the case of the outer ring 
receiving tension, such a rod may in practice be possible to 
make by using electrical or hydraulic control technology 
because of its small expansion-traction ratio. On the other 
hand, in the case of the inner ring, which is indispensable to 
the rational structural system of the RLD, there is an 
actualization problem because of the large expansion-traction 
ratio 5~6 and action in high compression (Fig. 4). 

 

 
 

Fig.4 Telescopic cylinder 

 

3.2 System B (main structure + (secondary inner 
ring + suspension+ outer ring) 
The inner ring through node 5 in Fig.5, shifted from the 
position laid down in the innermost inner ring of System A, is 
called the secondary inner ring, and has a maximum 
expansion-traction ratio within 3. This system provides 
solutions to the problems in System A. However, in this 
system, a big bending moment occurs at node 5 and its 
vicinity in the cantilever section between nodes 5 and 6. A 
tension cable connected at the top of the post on node 5, 
suspends node 6. The secondary inner ring, outer ring and 
either suspension cable or stay cable have to control the 
length of the members during the change in shape of the RLD. 
This difficulty arises from the telescopic cylinder’s tendency 
to buckle. The production of the secondary inner ring is still 
difficult because of the action in high compression although 
the expansion-traction ratio is smaller than that of system A.  
 
3.3 New system (main structure +(a part of Aspension dome’ system + zigzag cable + 
outer ring)) 

Fig.5 System B 
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The expandable compression member drives the RLD in both systems A and B. This member works 
under high compression and must change length at the same time. In this situation, a telescopic 
cylinder may be adopted as the expandable member. However a telescopic cylinder normally lacks 
bending rigidity where the rods are connected. Therefore, there is a buckling problem that affects the 
structural stability. This considered, the expandable compression member may not be practicable for 
driving the RLD. In contrast, the new system employs adjustment of length and tension of the cables 
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to change the geometry of the RLD. The new 
structural system of the RLD comprises the 
main structure and a substructure, as shown in 
Fig. 6. The substructure comprises a part of an 
Aspension Dome [3], an outer tension cable 
disposed concentrically around the peripheral 
border of the main structure and zigzag cables 
connected in a W-M shaped pattern to the 
points of the concentric ring of quadrilaterals 
of the lamella. The Aspension Dome part, the 
central part of the RLD, comprises hoop 
cables, diagonal cables and posts. 3-DMASEs, 
posts and diagonal cables are fixed members. 
These members are always under stress while 
keeping the equilibrium of the RLD by 
simultaneously adjusting the length and the 
tension forces of the hoop cables, outer tension 
cable and zigzag cables. Fig. 7 shows a 
diagram of this structural system. Referring to 
the figure, appropriate horizontal forces are 
given to nodes 6, 7 and 8 by adjusting the 
length and the tension forces of the hoop 
cables ○5 . While, diagonal cables ○3  act in 
tension and posts ○2  act in compression. The 
posts are raised and the power opposite to the 
direction of gravity acts on the nodes of the 
main structure. The tension force of the 
diagonal cable ○3  acts on node 4 and shrinking 
action occurs in the circumferential direction 
of the RLD. The zigzag cable ○4 , together 
with the main structure, effectively resists 
against the shrinking action. The outer cable 
○6  is indispensable for containing the 
spreading action of the RLD. The hoop cables 
through node 6 and 8 resist the lifting force of 
the wind load. This new system creates a self-
equilibrium structure. The tension forces of 
these cables are determined numerically by 
solving a nonlinear programming problem 
subjected to constraints.  
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4 Numerical method of structural analysis 
According to the comparison from the stand point of constructional and structural rationality, the 
new structural system appears to have the most potential for allowing the realization of the RLD. A 
numeric method of structural analysis is described in order to investigate the structural behaviors in 
each RLD system under an axisymmetric dead load, and the comparison among the three systems is 
made numerically. The results show the new structural system to have significantly better structural 
performance than systems A and B. Furthermore, structural analysis of the RLD based on the new 
system is carried out in a wide range of t. 

4.1 Stiffness matrix of 3-DMASE 
Fig. 8 shows the space position of major points expressed in (x, y, z) 3-dimensional coordinates for a 
beam-column element i connecting scissor points between i and (i+1) of 3-DMASE. In the figure, 3-
dimensional coordinates of node i are already given in Eq.(1). In addition to these coordinates, the 
coordinates of node (i+1), the central point Ci of the beam-column element i and the sphere centre 
point P are given in Eq. (2). 
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Fig. 9 shows three sets of orthogonal components of unit vector e i
k

r (k=1, 2, 3) for the local 
coordinate and three sets of orthogonal components of unit vector E i

k

r (k=1, 2, 3) for the reference 
coordinate. Those unit vectors are given in Eq. (3). 
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The components of end force with respect to both the local and reference system of axes are defined 
in Fig. 10 for the beam-column element i. And the components of end displacement with respect to 
both systems are defined as well, although not shown in the figure. 
The stiffness equation for the element i with respect to the local system is given by Eq.(4). 
{ } [ ] { }　　iii dkf =  

Where { }f i is 12 sets of end force vector referred in Fig.10(a), and {d}i is the corresponding 12 sets 
of nodal displacement vector. The transpose of the vectors, { }if  and { }id , are written in Eq.(5). 
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Where δik(k=1~3)=translation, θik(k=1~3)=rotation with respect to the local coordinate axes. [ ]k i is 
the 12×12 size of beam-column type of member stiffness matrix and given by Eq.(6). 
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SYM. 

Where E=Young’s modulus, Ai=cross-sectional area, li=element length, Ii1=torsional constant, I i(2,3) 
=moment of inertia and G=shearing modulus for the element i. 
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the element i with respect to the reference coordinate system is given by 
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placement and the corresponding components of end force with respect to 
e systems are given by Eq. (9). 
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d (10), the stiffness matrix [K]i for the element i with respect to the 
 is given by Eq. (11). 

(11) 
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Then, by superimposing Eq. (11), the overall stiffness equation of 3-DMASE with respect to the 
reference coordinate system is obtained. 
 
4.2 Overall stiffness equation  
The overall stiffness equation for the RLD for each structural system under axisymetric loading 
conditions can be obtained by superimposing the stiffness equations with respect to the reference 
coordinate for the additional members in each structural system on the above-mentioned stiffness 
equation for 3-DMASE. In this case, the overall equation is solved under the boundary displacement 
conditions that ∆3=0 for node point 1 and ∆2=0 for all node points.  
In the new structural system for the RLD, a set of horizontal loads act on the reference direction 1 
through the stressing of hoop cables, in addition to the dead load applied in the reference direction 3. 
Referring to Fig. 7, three sets of horizontal loads H6, H7 and H8 are determined by solving the 
following nonlinear problem subjected to constraints in the numerical structural analysis. 
The nonlinear programming problem: Minimize the sum of squares of nodal displacements in the 
main structure under the conditions that H6, H7 and H8 work in tension. The numerical calculation is 
based on Powell’s variable metric method [4]. 
 
4.3 Comparison between systems 
The structural performances for the new structural system and the other two systems are investigated 
numerically based on the method of analysis in section 4.2. Fig. 11 shows the numerical comparison 
of nodal displacements, bending moments and axial force for t=0 using the following parameter. 
Distribution of nodal vertical load: P1=0, P2=P3= P*1.0, P4= P*0.9, P5= P*0.8, P6= P*0.7 where Pi 
is the concentrated vertical load at node i and P is magnitude of load. 
Data of 3-DMASE:  
Geometry (see Fig.1): φ=45o, n=6, θ1=15o, θ6=71.25o, ∆θ=11.25o, circumferential division number 
of dome=16  
Member information: λ1=200, λ2=250, λ3=200. Each λ is defined as r/i where i is the radii of 
gyration for each local axis and is calculated from AI / . I is moment of inertia or torsional 
constant for each local axis and A is the sectional area. I and A are the same for all elements of 3-
DMASE.  
Additional member data: 
System A: sectional area of the inner and the outer ring is taken to be the same as A of 3-DMASE. 
System B: direction of post for t=0 is the normal of the spherical surface, length is 0.175*r, sectional 
area is 0.4*A, sectional area of suspension and stay cables is 0.2*A, length of post and stay cable is 
constant under retraction, sectional area of outer cable is A. 
New system: direction of two posts for t=0 is vertical, sectional area of two posts = 0.4*A, length of 
inner post = 1.5*(z6-z8), length of secondary inner post = 3.0*(z5-z7), sectional area of diagonal 
cable = 0.2*A, sectional area of zigzag cable = 0.4*A, sectional area of outer cable = A, length of  
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acts on node 4 through H . Overall, the structura

posts and diagonal cables is constant under
retraction.  
In the analysis of the new system, H6=0., H7=
2.562*P and H8=0. are the numerical solution for
the given nonlinear programming problem.
Referring to Fig. 11(a)(b)(d), the displacements
and the bending moment with respect to the local
axis 3 for the new structural system are very small
compared to those of systems A and B. Referring
to Fig.11(c)(d), a large bending moment with
respect to the local axis 2 occurs at node 4, and the
axial forces of elements 3 and 4 are relatively
large, because the tension force of the zigzag cable
 9

7
performance of the new structural system is significantly better than that of systems A and B. 
 
4.4 Numerical results of new system  
Concerning the new system, which indicates the best structural performance among the three 
proposed systems, its numerical structural analysis is carried out in a geometrical range where t= 
−0.25 ~ 0.25. The horizontal forces H6, H7 and H8 are determined so as to minimize the sum of 
squares of nodal displacements in the main structure under the conditions that the hoop cables work 
in tension. Referring to Fig. 12, the nodal displacements and member forces change significantly in 
the range of t from –0.25 to 0.25. A large vertical displacement occurs at t= –0.25 and 0.25, and a 
large bending moment with respect to the local axis 2 occurs at node 4 where t=0.25. Fig.13 shows 
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the variations in the horizontal forces H6, H7 and tension forces To, T7-4 for t. Although the other 
horizontal force H8 is 0 for t in this analysis, the hoop cable through the node 8 may be useful in 
resisting a live load such as wind. 
 
5 Ending remarks 
For the RLD a new structural system that comprises a main structure and a substructure is proposed. 
The main structure consists of 3-DMASEs in lamella arrangement. The substructure comprises a part 
of an Aspension Dome, an outer tension cable disposed concentrically around the peripheral border 
of the main structure and zigzag cables in a concentric ring of quadrilaterals of the lamella. Based on 
structural analysis, the tension forces of these cables are determined numerically by solving a 
nonlinear programming problem subjected to constraints. According to the numerical results, new 
system maintains high level of structural performance throughout the changes in geometry. It seems 
that progress in the expansion-traction technology in high tension determines the realization of the 
RLD. 
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