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Abstract

This paper proposes a new structural system for the Retractable Loop-Dome (RLD) that comprises a
main structure and a substructure. The main structure consists of 3-dimensional multi-angulated
scissor elements (3-DMASESs) in lamella arrangement. The substructure comprises a part of an
Aspension Dome, an outer tension cable disposed concentrically around the peripheral border and
zigzag cables in a ring of quadrilaterals of the lamella. The Aspension Dome part, the central part of
the RLD, comprises hoop cables, diagonal cables and posts. 3-DMASEs, posts and diagonal cables
are fixed members. All members are always under stress while keeping the equilibrium of the RLD
by simultaneously adjusting the length and the tension forces of the hoop cables, the outer tension
cable and the zigzag cables. The tension forces of these cables are determined numerically by
solving a nonlinear programming problem subjected to constraints.

Keywords: retractable loop-dome, 3-dimensional multi-angulated scissor element, main structure,
substructure, structural system, nonlinear programming

1 Introduction

In the preceding papers [1][2], the author proposed the retractable loop-dome (RLD) that
continuously changes in shape according to variations in the diameter of the oculus. The main
structural elements of the RLD are 3-dimensional multi-angulated scissor elements (3-DMASESs) in
lamella arrangement. The geometric form of the scissor element is determined by cutting a sphere
with an inclined plane that intersects the apex. The pivots of the scissor elements form a perfect
circle at each level, and are arranged at an equiangular degree around the axis of the dome. The
scissor pivot-axes coincide with the normals of the spherical surface. The main structure of the RLD
consists of two sets of 3-DMASESs, one set running clockwise and the other counterclockwise from
the center. This allows the changes in the geometry of the structure, particularly the diameter of the
oculus, without elastic deformation of the elements. During the retraction, a small variation in angle
is caused by a slight difference between the scissor pivot-axis and the hole-axis, necessitating a
loose-hole or an embedded spherical roller bearing (or self-aligning ball bearings) at the scissor pivot.
In order to apply the main structure for practical use, the structure must be made stable. Therefore, a
structural system in which an expandable ring is added to both the inner and outer circle of the main
structure, so as to produce the structural efficiency of shell-like behavior, was proposed [1][2].
However, in the proposal, there was a problem in making the inner ring actual because of a large
expansion-traction ratio and action in high compression despite using telescopic cylinder rods.

This paper briefly describes the three ideas considered thus far in the development of a structural
system for the RLD. Comparing them from the aspect of constructional and structural rationality,
one appears to have the most potential for allowing the realization of the RLD. This newest
structural system comprises the main structure and a substructure. The substructure comprises a part
of an Aspension Dome [3], an outer tension cable disposed concentrically around the peripheral
border of the main structure and zigzag cables in a ring of quadrilaterals of the lamella. The
Aspension Dome part, the central part of the RLD, comprises hoop cables, diagonal cables and posts.
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The 3-DMASEs, posts and diagonal cables are fixed

members. Those members are always under stress while > 1
keeping the equilibrium of the RLD by simultaneously

adjusting the length and the tension forces of the hoop S -
cables, the outer tension cable and the zigzag cables. /
Based on the structural analysis developed in this paper,
the tension forces of those cables are determined /
numerically by solving a nonlinear programming /
problem subjected to constraints. Some numerical
examples are shown. /

2 Main structure
The main structure of the RLD consists of 3-DMASEs in
lamella arrangement. The geometric form of the 3-
DMASE is determined by cutting a sphere with a plane.
The scissor hinge-points (1, 2, ..., i, i+l, ..., n) of the
element are arranged on the surface of a sphere S as
follows:

a) Cutting sphere S with inclined plane P that intersects

apex T, as shown in Fig. 1(a).

(a) Section

b) Arranging hinge-points on circle Q (ellipse on the xy
plane), as shown in Fig. 1(b). That is, 6,—0,= 6;—0,=
.= 0y 0=...= 0, 0n1y= A0 on xy plane.
Referring to Fig.1 and denoting a changing form
parameter ¢ explained in the previous paper [1], 3-
dimensional coordinate of a scissor point i which is
written ‘node (point) i” in the following, is given by :
Eq.(1 0,=0,+(i-1)*(A0)

q.(D).
A0=(0,-0,)/(n-1)

(b) Plan

When =0, it is called ‘the reference state’, the scissor
pivot-axes coincide with the normals of the spherical
surface. The main structure of the RLD consists of two
sets of 3-DMASESs, one set running clockwise and the other counterclockwise from the center. This
allows the changes in the geometry of the structure, particularly the diameter of the oculus as shown
in Fig.2, without elastic deformation of the elements.

Fig.1 Position of scissor points

sin qo{cost+ cos(gj sin ¢ tan 6(}
ﬁ=Xi= s L:Yi—tamﬁ,X,, —-
g 1+ cosz((gj tan’ 6, g g

= 0.0 (reference state)

Fig.2 Changing geometry of main structure (n=6)
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3 Proposed structural systems

In order to apply the main structure for practical use, the
structure must be made stable. The problem lies in
establishing a rational structural system for a large span,
considering the expansion-traction technology of today. The
two ideas previously put forth concerning the structural
system of the RLD, along with the new idea, are described as
follows.

3.1 System A (main structure + (inner+outer)
expandable ring)

As shown in Fig. 3, system A, an expandable ring is added to
both the inner and outer circles of the dome so as to produce
the structural efficiency of shell-like behavior under dead
load. Each expandable circular ring consists of expandable
rods that form a regular polygon. In the case of the outer ring
receiving tension, such a rod may in practice be possible to
make by using electrical or hydraulic control technology
because of its small expansion-traction ratio. On the other
hand, in the case of the inner ring, which is indispensable to
the rational structural system of the RLD, there is an

actualization problem because of the large expansion-traction
ratio 5~6 and action in high compression (Fig. 4).

3.2 System B (main structure + (secondary inner
ring + suspension+ outer ring)

The inner ring through node 5 in Fig.5, shifted from the
position laid down in the innermost inner ring of System A, is
called the secondary inner ring, and has a maximum
expansion-traction ratio within 3. This system provides
solutions to the problems in System A. However, in this
system, a big bending moment occurs at node 5 and its
vicinity in the cantilever section between nodes 5 and 6. A
tension cable connected at the top of the post on node 5,
suspends node 6. The secondary inner ring, outer ring and
either suspension cable or stay cable have to control the

length of the members during the change in shape of the RLD.

This difficulty arises from the telescopic cylinder’s tendency
to buckle. The production of the secondary inner ring is still
difficult because of the action in high compression although
the expansion-traction ratio is smaller than that of system A.

outer ring

Fig.3 System A

«— [ —>

(D secondary inner ring

@ post

(3 suspension cable

@) stay cable

() outer ring

Fig.5 System B

3.3 New system (main structure +(a part of Aspension dome’ system + zigzag cable +

outer ring))

The expandable compression member drives the RLD in both systems A and B. This member works
under high compression and must change length at the same time. In this situation, a telescopic
cylinder may be adopted as the expandable member. However a telescopic cylinder normally lacks
bending rigidity where the rods are connected. Therefore, there is a buckling problem that affects the
structural stability. This considered, the expandable compression member may not be practicable for
driving the RLD. In contrast, the new system employs adjustment of length and tension of the cables



Spatial Structures — Permanent and Temporary
November 8-12 2010, Shanghai, China

J_E Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2010, Shanghai

to change the geometry of the RLD. The new
structural system of the RLD comprises the
main structure and a substructure, as shown in
Fig. 6. The substructure comprises a part of an
Aspension Dome [3], an outer tension cable
disposed concentrically around the peripheral
border of the main structure and zigzag cables
connected in a W-M shaped pattern to the
points of the concentric ring of quadrilaterals
of the lamella. The Aspension Dome part, the
central part of the RLD, comprises hoop
cables, diagonal cables and posts. 3-DMASEs,
posts and diagonal cables are fixed members.
These members are always under stress while
keeping the equilibrium of the RLD by
simultaneously adjusting the length and the
tension forces of the hoop cables, outer tension
cable and zigzag cables. Fig. 7 shows a
diagram of this structural system. Referring to
the figure, appropriate horizontal forces are
given to nodes 6, 7 and 8 by adjusting the
length and the tension forces of the hoop
cables ® . While, diagonal cables @ act in
tension and posts @ act in compression. The
posts are raised and the power opposite to the
direction of gravity acts on the nodes of the
main structure. The tension force of the
diagonal cable @ acts on node 4 and shrinking
action occurs in the circumferential direction
of the RLD. The zigzag cable @, together
with the main structure, effectively resists
against the shrinking action. The outer cable
©® is indispensable for containing the
spreading action of the RLD. The hoop cables

through node 6 and 8 resist the lifting force of

the wind load. This new system creates a self-

equilibrium structure. The tension forces of

these cables are determined numerically by
solving a nonlinear programming problem
subjected to constraints.

Fig. 7 Diagram of new structural system

(3-DMASEs @ in lamella arrangement)
Fig. 6(a) Main structure

(@)post(@)diagonal cable(4) Izigzag cable| ©) fhoop cable|
@|outer cab1e| ( |

|: member’s changing in length )

Fig. 6(b) Substructure
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4 Numerical method of structural analysis

According to the comparison from the stand point of constructional and structural rationality, the
new structural system appears to have the most potential for allowing the realization of the RLD. A
numeric method of structural analysis is described in order to investigate the structural behaviors in
each RLD system under an axisymmetric dead load, and the comparison among the three systems is
made numerically. The results show the new structural system to have significantly better structural
performance than systems A and B. Furthermore, structural analysis of the RLD based on the new
system is carried out in a wide range of ¢.

4.1 Stiffness matrix of 3-DMASE

Fig. 8 shows the space position of major points expressed in (x, y, z) 3-dimensional coordinates for a
beam-column element connecting scissor points between i and (i+1) of 3-DMASE. In the figure, 3-
dimensional coordinates of node i are already given in Eq.(1). In addition to these coordinates, the
coordinates of node (i+1), the central point C; of the beam-column element [il and the sphere centre
point P are given in Eq. (2).

sin go{cos t+ COS(Z) sin ¢ tan 6’(,41)}
r X, + X, P sin ¢(cos ¢ — 1)
1+ cosz[wJ tan’ 4, c, b 7
x(i+l) 2 '
v, +y, p, (@) .

. tan 6, x LR AU sin| — |sin ¢
y(:+l) = (D7D N c,w = 2 s =7 (2] (2)
Z(i+1) (/)

— tan| — ) z, +z,, . .
’ (2 )xw) — P sin?| 2 |(1 - cos ¢)
c, 2 2
z
4
A

~~._ Point (D) (X1 i+1),2G+1))

ZG+1[”

Zi

for local coordinate (k=1~3)
' unit vector of scissor point

1, .
//

Centgf'of Sphere i //,’7’ eference coordinate (k=1~3)
P
P(ps.py:p2) X x
Fig. 8 3-dimensional coordinates of points Fig. 9 Base unit orthogonal vectors
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Fig. 9 shows three sets of orthogonal components of unit vector ¢/ (k=1, 2, 3) for the local
coordinate and three sets of orthogonal components of unit vector £/ (k=1, 2, 3) for the reference

coordinate. Those unit vectors are given in Eq. (3).

e = 7(x(i+1) T X Ve T Vi Zey T Zi)
i
E' =

X,y
N e A — X
‘_ , Rl_ ,OJ E}(m) ( R(m) Yy 0]

é} :i( x_cxﬂpv _Cy,"pz _C__I) () (H])
S R _ 2 2
ézl _ é'}' < éli i i (,+1) =/ X it y(,n)
Y. X
[, = \/(x(i+l) - xi)z + (y(i+l) - yi)z + (Z<t+|; - Z‘)2 ( J E;M) [ Foy x(m) OJ
_ B > _ _ B (l‘rl) ('*1)
s, = \/(px C.u‘) + (py c”)z + (p; C:‘) 00 1) E(LH) 00 1

The components of end force with respect to both the local and reference system of axes are defined
in Fig. 10 for the beam-column element . And the components of end displacement with respect to
both systems are defined as well, although not shown in the figure.

The stiffness equation for the element [ij with respect to the local system is given by Eq.(4).

{f }i = [k]i {d}i 4

Where { f } ; 1s 12 sets of end force vector referred in Fig.10(a), and {d}, is the corresponding 12 sets

)

of nodal displacement vector. The transpose of the vectors, { f}l_ and {d }l_ , are written in Eq.(5).

t
{f}z =(nil Ny, My My My My ey Paay Baays Maay Mgy m([+1)3)

{d}it:(5'1 51'2 5,'3 0,'1 91‘2 ‘9i3 5(i+1)1 5(i+1)2 5(i+1)3 a(wm ‘9(i+1)2 9(i+1)3)

i

©)

Where 0, (k=1~3)=translation, ;(k=1~3)=rotation with respect to the local coordinate axes. [k]i is
the 12%12 size of beam-column type of member stiffness matrix and given by Eq.(6).

EZAf 0 0 0 0 0 —EIA‘ 0 0 0 0 0
1213:1 0 0 o SE 0 _121;:1 0 0 o 6E21,]
1 I’ ] I
12E1 6EL, 0 o 1215;1 0 6EI 0
11 IR ] ]
% 0 0 0 0 0 —GZ—’ 0 0
AEI, 0 o 6E2],Z o 2EL 0
ll ll ll
4131‘3 6]151 0 o 21?1,3
k] = ' ' '
EIA" 0 0 0 0 0 (6)
" E 6EI
SYM. 0 0 0 -
121;;112 o OF 0
L l,
Zl
4EI, 0
/,
4EI,
Zl

Where E=Young’s modulus, 4;=cross-sectional area, /=element length, /;;=torsional constant, / ;3
=moment of inertia and G=shearing modulus for the element .
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Fig. 10 Components of end force for element

The stiffness equation for the element [i| with respect to the reference coordinate system is given by
Eq. (7).

tr}, =[x]{p} (M

Where {F};is 12 sets of end force vector referred to Fig.10(b), and {D}; is the corresponding 12 sets
of nodal displacement vector. The transpose of the vectors, {F}; and {D};, are written in Eq.(8).

{F}i' = {Nll N, N, M, M, M, N(i+l)l N(:+1)2 N(1+l)3 M(:+])l M(l+l)2 M(H])} ()

{D}i = {Ail AiZ A:a ®il ®12 913 A(H])l A(HI)Z A(m)a ®(i+])l ®(i+1)2 ®(i+1)3}

The components of end displacement and the corresponding components of end force with respect to
both the local and reference systems are given by Eq. (9).

la}, =[r}ip}. Uy =[r}iFs, ©

Where [T); is defined as the transformation matrix for the element [ij and written in Eq. (10).

T 0 0 0 - R R — — R
[ 1]‘ [ ] [ ] [ ] é»]L 'E; Elf E; é»lf E; él _El(m) é»l -E;H) —»11 .E3(L+|)
[0] [Tll [O] [O] =i i =i i =i i =i (i) =i i) =i (i)
[T]i = [0] [0] [T] [0] > [Tl]l =\¢,-E ¢-E ¢- k| [Tz], =|¢, - E e, L, e, E;
0 [ [ [r] ¢ . @ -.E @B g E" g . E“ g F
2l;

Using Eq. (5), (7), (9) and (10), the stiffness matrix [K]; for the element |ﬂ with respect to the
reference coordinate system is given by Eq. (11).

K] =[r)[k][T] an
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Then, by superimposing Eq. (11), the overall stiffness equation of 3-DMASE with respect to the
reference coordinate system is obtained.

4.2 Overall stiffness equation

The overall stiffness equation for the RLD for each structural system under axisymetric loading
conditions can be obtained by superimposing the stiffness equations with respect to the reference
coordinate for the additional members in each structural system on the above-mentioned stiffness
equation for 3-DMASE. In this case, the overall equation is solved under the boundary displacement
conditions that A;=0 for node point 1 and A,=0 for all node points.

In the new structural system for the RLD, a set of horizontal loads act on the reference direction 1
through the stressing of hoop cables, in addition to the dead load applied in the reference direction 3.
Referring to Fig. 7, three sets of horizontal loads Hg, H; and Hg are determined by solving the
following nonlinear problem subjected to constraints in the numerical structural analysis.

The nonlinear programming problem: Minimize the sum of squares of nodal displacements in the
main structure under the conditions that H¢, H; and Hg work in tension. The numerical calculation is
based on Powell’s variable metric method [4].

4.3 Comparison between systems

The structural performances for the new structural system and the other two systems are investigated
numerically based on the method of analysis in section 4.2. Fig. 11 shows the numerical comparison
of nodal displacements, bending moments and axial force for /=0 using the following parameter.
Distribution of nodal vertical load: P;=0, P,=P;= P*1.0, P4= P*0.9, Ps= P*0.8, Ps= P*0.7 where P;
is the concentrated vertical load at node i and P is magnitude of load.

Data of 3-DMASE:

Geometry (see Fig.1): ¢p=45°, n=6, 6,=15°, 0,=71.25°, A0=11.25°, circumferential division number
of dome=16

gyration for each local axis and is calculated from /// 4. I is moment of inertia or torsional

constant for each local axis and A4 is the sectional area. / and 4 are the same for all elements of 3-
DMASE.
Additional member data:

area is 0.4*4, sectional area of suspension and stay cables is 0.2*4, length of post and stay cable is
constant under retraction, sectional area of outer cable is A4.

1nnerp0st= 1.5*(z¢-z3), length of secondary inner post = 3.0%(zs-z;), sectional area of diagonal

cable = 0.2*4, sectional area of zigzag cable = 0.4*4, sectional area of outer cable = 4, length of

node point i node point i
1 2 ( 3 P 4) 5 6 1 2 ( 3 P 4) 5 6
-1000 -1000
0 ¢ 0 C b)
1000 1000
——
system A ——system A \\\X
—O—system B —O—system B
2000 =O=new system 2000 =O=new system \E
0 3000
A\(*Pr/(EA)) A;(*Pr/(EA))
Fig. 11(a) A, Fig. 11(b) As
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my(*Pr) m3(*Pr)
04 0.4
—Ix—system A
0.3 ——system B 03
02 =O=new system 02
0.1 ’ = — 0.1
0.0 € )| 0.0 ¢ 2
——system A

-0.1 0.1 —O—system B
02 02 L |=O—newsystem

1 2 3 4 5 6 1 2 3 4 5 6

(node point ;3 (node point 7)
Fig. 11(c) my Fig. 11(d) ms

. . n(*P)
posts and diagonal cables is constant under 3 :

retraction. .
In the analysis of the new system, H¢=0., H;=

. . 20.0
2.562*P and Hg=0. are the numerical solution for b ¢ b3
the given nonlinear programming problem. 100

Referring to Fig. 11(a)(b)(d), the displacements
and the bending moment with respect to the local %
00 H —/— system A 3

axis 3 for the new structural system are very small
—{—system B

compared to those of systems A and B. Referring

to Fig.11(c)(d), a large bending moment with _jop L ——tovsysiem

respect to the local axis 2 occurs at node 4, and the 1 5 3 4 s .
axial forces of elements ]3| and @ are relatively (node point 7)

large, because the tension force of the zigzag cable Fig. 11(e) m

acts on node 4 through H;. Overall, the structural
performance of the new structural system is significantly better than that of systems A and B.

4.4 Numerical results of new system

Concerning the new system, which indicates the best structural performance among the three
proposed systems, its numerical structural analysis is carried out in a geometrical range where =
—0.25 ~ 0.25. The horizontal forces Hy, H; and Hg are determined so as to minimize the sum of
squares of nodal displacements in the main structure under the conditions that the hoop cables work
in tension. Referring to Fig. 12, the nodal displacements and member forces change significantly in
the range of ¢ from —0.25 to 0.25. A large vertical displacement occurs at = —0.25 and 0.25, and a
large bending moment with respect to the local axis 2 occurs at node 4 where =0.25. Fig.13 shows

(n}ode point Q

(node p01nt4l)

-200

-200

-100 -100

100

200
300
400
A(*Pr/(EA)) === =025 -0 -=0.125 —0—=0.00 A;(*Pr/(EA))| = == =025 -T-=10.125 —O0—=0.00
—0— =0.125 —&—r=0.25 —0— =0.125 —&—r=0.25
Fig. 12(a) A, Fig. 12(b) As
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-0-- =025 -0 -+=0.125 —O0—=0.00 === =025 -8-+=0125 —6—=0.00
my(*Pr) | —o— =0.125 —&—1=025 my(*Pr) | —o— =0.125 —&—=025
0.4
0.2
0.0 I
-0.2
04
0.6 -0.6
1 2 3 4 5 6 1 2 3 4 5 6
(node point 7) (node point 7)
Fig. 12 (c) my Fig. 12(d) m;
ni(*P) H, T (*P)
40
30 T
T74
% W
10
Hy
0 t
He
1 2 3 4 5 6 -10
(node point 7) -0.250 -0.125 0.000 0.125 0.250
SO 025 D= 0.125 —O—10.00 H7,H6:horizqntal force (s&f.e Fig.7)
20,125 025 T,,T7.4: tension of outer ring, zigzag cable
Fig. 12(e) n; Fig. 13 Horizontal forces, tension of cables

the variations in the horizontal forces Hg, H; and tension forces T,, T7.4 for . Although the other
horizontal force Hg is O for ¢ in this analysis, the hoop cable through the node 8 may be useful in
resisting a live load such as wind.

5 Ending remarks

For the RLD a new structural system that comprises a main structure and a substructure is proposed.
The main structure consists of 3-DMASESs in lamella arrangement. The substructure comprises a part
of an Aspension Dome, an outer tension cable disposed concentrically around the peripheral border
of the main structure and zigzag cables in a concentric ring of quadrilaterals of the lamella. Based on
structural analysis, the tension forces of these cables are determined numerically by solving a
nonlinear programming problem subjected to constraints. According to the numerical results, new
system maintains high level of structural performance throughout the changes in geometry. It seems
that progress in the expansion-traction technology in high tension determines the realization of the
RLD.
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