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概要 

 
既往論文[1][2]で円形天窓（オクルス）直径の大きさ及び構造全体の幾何学的形状を連続的に変化させることができ

る開閉式ドーム：「ループ状開閉ドーム（Retractable Loop-Dome, 略称；RLD）」を提案した。その主構造体は、ある

部分球面上に 3 次元多折はさみ要素（3-d multi-angulated scissor element）をラメラ状に、その球面の中心軸の回り

で等角度に配置することにより構成される。その 3 次元多折はさみ要素のピン交点は、前記球面の頂点を通り前記中心

軸に対して斜めに交差する各同一平面上にあり、且つ、各要素上で互いに隣接するピン交点は、前記中心軸の回りで成

す角度がそれぞれ等しくなるように配置されている。さらに各ピン交点の回転軸（ピボット軸）は、前記部分球面の法

線方向に一致している。このようにして得られる構造体は、一種の可変構造体で、要素の弾性変形を伴うことなくその

剛体移動のみによって頂部の天窓直径の大きさを変化させることが出来る．この可変構造体の形状を連続的に変化させ

る駆動方法且つ大スパンが可能となるような合理的システムの構築に向けて、既往研究では、主構造体の内周と外周に

それぞれ伸縮する圧縮リング、引張リングを設けて、3 次元多折はさみ部材が主に軸力伝達機構となる力学的合理性に

富む構造システムを提案した。しかし、この提案において、内周リングを構成する直線状の多段式伸縮ロッドは伸縮率

が 5～6倍と高くしかも大きな圧縮軸力を受けるため、ロッドの製作技術や座屈耐力上の問題がある。 

そこで、本論文では、発想を変えて、主構造体とアスペンションドーム (Aspension Dome)[3]の一部、つまり、引張

材としてのフープ・ケーブルとダイアゴナル・ケーブル、圧縮材としてのポスト、さらに主構造体の外周部にテンショ

ン・ケーブルと同放射方向にジグザグ・ケーブルを組み合わせた新たな構造システムを提案する。すなわち、可変長引

張材としてのフープ・ケーブル、テンション・ケーブル及びジグザグ・ケーブルの張力と長さを相互に関係性を保ちつ

つ調整して、3 次元多折はさみ部材、ポスト及びダイアゴナル・ケーブルに応力を導入し、全部材の応力と構造変位を

許容範囲内に収めつつ、構造体全体の連続的形状変化を与えるシステムである。さらに、本論文では RLD の軸対称構造

解析方法を展開し、新構造システムと既往構造システムの長期荷重状態における力学的性状の比較と新システムの可変

中における応力・変位性状を数値解析的に検討し、新構造システム即ちケーブル・ポストシステムの力学的合理性の高

さを提示している。 

Abstract 
This paper proposes a new structural system for the Retractable Loop-Dome (RLD) that comprises a main structure and a 
substructure. The main structure consists of 3-dimensional multi-angulated scissor elements (3-DMASEs) in lamella arrangement. 
The substructure comprises a part of an Aspension Dome, an outer tension cable disposed concentrically around the peripheral border 
and zigzag cables in a ring of quadrilaterals of the lamella. The Aspension Dome part, the central part of the RLD, comprises hoop 
cables, diagonal cables and posts. 3-DMASEs, posts and diagonal cables are fixed members. All members are always under stress 
while keeping the equilibrium of the RLD by simultaneously adjusting the length and the tension forces of the hoop cables, the outer 
tension cable and the zigzag cables. The tension forces of these cables are determined numerically by solving a nonlinear 
programming problem subjected to constraints. 
 
Keywords: retractable loop-dome, 3-dimensional multi-angulated scissor element, main structure, substructure, cable-post system, 
nonlinear programming 
 
 
1 Introduction 
In the preceding papers [1][2], the author proposed the retractable loop-dome (RLD) that continuously changes in shape according to 
variations in the diameter of the oculus. The main structural elements of the RLD are 3-dimensional multi-angulated scissor elements 
(3-DMASEs) in lamella arrangement. The geometric form of the scissor element is determined by cutting a sphere with an inclined 
plane that intersects the apex. The pivots of the scissor elements form a perfect circle at each level, and are arranged at an 
equiangular degree around the axis of the dome. The scissor pivot-axes coincide with the normals of the spherical surface. The main 
structure of the RLD consists of two sets of 3-DMASEs, one set running clockwise and the other counterclockwise from the center. 
This allows the changes in the geometry of the structure, particularly the diameter of the oculus, without elastic deformation of the 
elements. During the retraction, a small variation in angle is caused by a slight difference between the scissor pivot-axis and the hole-
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axis, necessitating a loose-hole or an embedded spherical roller bearing (or self-aligning ball bearings) at the scissor pivot. In order to 
apply the main structure for practical use, the structure must be made stable. Therefore, a structural system in which an expandable 
ring is added to both the inner and outer circle of the main structure, so as to produce the structural efficiency of shell-like behavior, 
was proposed [1][2]. However, in the proposal, there was a problem in making the inner ring actual because of a large expansion-
traction ratio and action in high compression despite using 
telescopic cylinder rods.  
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Fig.1 Position of scissor points 

(a) Section 

(b) Plan

This paper briefly describes the three ideas considered thus far in the 
development of a structural system for the RLD. Comparing them 
from the aspect of constructional and structural rationality, one 
appears to have the most potential for allowing the realization of the 
RLD. This newest structural system comprises the main structure 
and a substructure. The substructure comprises a part of an 
Aspension Dome [3], an outer tension cable disposed concentrically 
around the peripheral border of the main structure and zigzag cables 
in a ring of quadrilaterals of the lamella. The Aspension Dome part, 
the central part of the RLD, comprises hoop cables, diagonal cables 
and posts. The 3-DMASEs, posts and diagonal cables are fixed 
members. Those members are always under stress while keeping the 
equilibrium of the RLD by simultaneously adjusting the length and 
the tension forces of the hoop cables, the outer tension cable and the 
zigzag cables. Based on the structural analysis developed in this 
paper, the tension forces of those cables are determined numerically 
by solving a nonlinear programming problem subjected to 
constraints. Some numerical examples are shown. 
 
2 Main structure 
The main structure of the RLD consists of 3-DMASEs in lamella 
arrangement. The geometric form of the 3-DMASE is determined 
by cutting a sphere with a plane. The scissor hinge-points (1, 2, …, i, 
i+1, ..., n) of the element are arranged on the surface of a sphere S as 
follows: 
a) Cutting sphere S with inclined plane P that intersects apex T, as 

shown in Fig. 1(a). 

b) Arranging hinge-points on circle Q (ellipse on the xy plane), as 
shown in Fig. 1(b). That is, θ2−θ1= θ3−θ2= …= θ(i+1)−θi=…= 
θn−θ(n-1)= ∆θ on xy plane. Referring to Fig.1 and denoting a 
changing form parameter t explained in the previous paper [1], 
3-dimensional coordinate of a scissor point i which is written 
‘node (point) i’ in the following, is given by Eq.(1). 

When t=0, it is called ‘the reference state’, the scissor pivot-axes 
coincide with the normals of the spherical surface. The main 
structure of the RLD consists of two sets of 3-DMASEs, one set 
running clockwise and the other counterclockwise from the center. 
This allows the changes in the geometry of the structure, particularly 
the diameter of the oculus as shown in Fig.2, without elastic 
deformation of the elements. 
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Fig.2 Changing geometry of main structure (n=6) 
 Proposed structural systems 

n order to apply the main structure for practical use, the structure must 
e made stable. The problem lies in establishing a rational structural 
ystem for a large span, considering the expansion-traction technology 
f today. The two ideas previously put forth concerning the structural 
ystem of the RLD, along with the new idea, are described as follows. 

.1 System A (main structure + (inner+outer) expandable ring) 
s shown in Fig. 3, system A, an expandable ring is added to both the 

nner and outer circles of the dome so as to produce the structural 
fficiency of shell-like behavior under dead load. Each expandable 
ircular ring consists of expandable rods that form a regular polygon. In 
he case of the outer ring receiving tension, such a rod may in practice 
e possible to make by using electrical or hydraulic control technology 
ecause of its small expansion-traction ratio. On the other hand, in the 
ase of the inner ring, which is indispensable to the rational structural 
ystem of the RLD, there is an actualization problem because of the 
arge expansion-traction ratio 5~6 and action in high compression (Fig. 
). 

.2 System B (main structure + (secondary inner ring + 
uspension+ outer ring) 
he inner ring through node 5 in Fig.5, shifted from the position laid 
own in the innermost inner ring of System A, is called the secondary 
nner ring, and has a maximum expansion-traction ratio within 3. This 
ystem provides solutions to the problems in System A. However, in 
his system, a big bending moment occurs at node 5 and its vicinity in 
he cantilever section between nodes 5 and 6. A tension cable connected 
t the top of the post on node 5, suspends node 6. The secondary inner 
ing, outer ring and either suspension cable or stay cable have to control 
he length of the members during the change in shape of the RLD. This 
ifficulty arises from the telescopic cylinder’s tendency to buckle. The 
roduction of the secondary inner ring is still difficult because of the 
ction in high compression although the expansion-traction ratio is 
maller than that of system A. 

.3 New system (main structure +(a part of Aspension dome’ 
ystem + zigzag cable + outer ring)) 
he expandable compression member drives the RLD in both systems 
 and B. This member works under high compression and must change 

ength at the same time. In this situation, a telescopic cylinder may be 
dopted as the expandable member. However a telescopic cylinder 
ormally lacks bending rigidity where the rods are connected. 
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Therefore, there is a buckling problem that affects the structural 
stability. This considered, the expandable compression member may 
not be practicable for driving the RLD. In contrast, the new system 
employs adjustment of length and tension of the cables to change the 
geometry of the RLD. The new structural system of the RLD 
comprises the main structure and a substructure, as shown in Fig. 6. 
The substructure comprises a part of an Aspension Dome [3], an 
outer tension cable disposed concentrically around the peripheral 
border of the main structure and zigzag cables connected in a W-M 
shaped pattern to the points of the concentric ring of quadrilaterals of 
the lamella. The Aspension Dome part, the central part of the RLD, 
comprises hoop cables, diagonal cables and posts. 3-DMASEs, posts 
and diagonal cables are fixed members. These members are always 
under stress while keeping the equilibrium of the RLD by 
simultaneously adjusting the length and the tension forces of the 
hoop cables, outer tension cable and zigzag cables. Fig. 7 shows a 
diagram of this structural system. Referring to the figure, appropriate 
horizontal forces are given to nodes 6, 7 and 8 by adjusting the 
length and the tension forces of the hoop cables ○5 . While, diagonal 
cables ○3  act in tension and posts ○2  act in compression. The posts 
are raised and the power opposite to the direction of gravity acts on 
the nodes of the main structure. The tension force of the diagonal 
cable ○3  acts on node 4 and shrinking action occurs in the 
circumferential direction of the RLD. The zigzag cable ○4 , together 
with the main structure, effectively resists against the shrinking 
action. The outer cable ○6  is indispensable for containing the 
spreading action of the RLD. The hoop cables through node 6 and 8 
resist the lifting force of the wind load. This new system creates a 
self-equilibrium structure. The tension forces of these cables are 
determined numerically by solving a nonlinear programming 
problem subjected to constraints. 

(3-
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4 Numerical method of structural analysis 
According to the comparison from the stand point of constructional 
and structural rationality, the new structural system appears to have 
the most potential for allowing the realization of the RLD. A numeric 
method of structural analysis is described in order to investigate the 
structural behaviors in each RLD system under an axisymmetric 
dead load, and the comparison among the three systems is made 
numerically. The results show the new structural system to have 
significantly better structural performance than systems A and B. 
Furthermore, structural analysis of the RLD based on the new system 
is carried out in a wide range of t. 

 

          
                    

Fig. 7 Diagram of new structural sys
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4.1 Stiffness matrix of 3-DMASE 
Fig. 8 shows the space position of major points expressed in (x, y, z) 3-dimensional coordinates for a beam-column element i 
connecting scissor points between i and (i+1) of 3-DMASE. In the figure, 3-dimensional coordinates of node i are already given in 
Eq.(1). In addition to these coordinates, the coordinates of node (i+1), the central point Ci of the beam-column element i and the 
sphere centre point P are given in Eq. (2). 
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Fig. 9 shows three sets of orthogonal components of unit vector i

ker (k=1, 2, 3) for the local coordinate and three sets of orthogonal 

components of unit vector (k=1, 2, 3) for the reference coordinate. Those unit vectors are given in Eq. (3). i
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The components of end force with respect to both the local and reference system of axes are defined in Fig. 10 for the beam-column 
element i. And the components of end displacement with respect to both systems are defined as well, although not shown in the 
figure. 
The stiffness equation for the element i with respect to the local system is given by Eq.(4). 
 
{ } [ ] { }　　iii dkf =  (4) 

 
Where { }f i is 12 sets of end force vector referred in Fig.10(a), and {d}i is the corresponding 12 sets of nodal displacement vector. 
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Where δik(k=1~3)=translation, θik(k=1~3)=rotation with respect to the local coordinate axes. [ ]k i is the 12×12 size of beam-column 

type of member stiffness matrix and given by Eq.(6). 
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SYM. 

 
 
Where E=Young’s modulus, Ai=cross-sectional area, li=element length, Ii1=torsional constant, I i(2,3) =moment of inertia and 
G=shearing modulus for the element i. 
The stiffness equation for the element i with respect to the reference coordinate system is given by Eq. (7). 
 
{ } [ ] { } 　　iii DKF =  (7) 

 
Where {F}i is 12 sets of end force vector referred to Fig.10(b), and {D}i is the corresponding 12 sets of nodal displacement vector. 
The transpose of the vectors, {F}i and {D}i, are written in Eq.(8). 
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Fig. 10 Components of end force for element i
 
The components of end displacement and the corresponding components of end force with respect to both the local and reference 
systems are given by Eq. (9). 
 
{ } [ ] { } { } [ ] { }iiiiii FTfDTd == 　　,  (9) 

 
Where [T]i is defined as the transformation matrix for the element i and written in Eq. (10). 
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(10) 

 
Using Eq. (5), (7), (9) and (10), the stiffness matrix [K]i for the element i with respect to the reference coordinate system is given by 
Eq. (11). 
 
[ ] [ ] [ ] [ ]ii

t
ii TkTK =  (11) 

 
Then, by superimposing Eq. (11), the overall stiffness equation of 3-DMASE with respect to the reference coordinate system is 
obtained. 
 
4.2 Overall stiffness equation  
The overall stiffness equation for the RLD for each structural system under axisymetric loading conditions can be obtained by 
superimposing the stiffness equations with respect to the reference coordinate for the additional members in each structural system on 
the above-mentioned stiffness equation for 3-DMASE. In this case, the overall equation is solved under the boundary displacement 
conditions that ∆3=0 for node point 1 and ∆2=0 for all node points.  
In the new structural system for the RLD, a set of horizontal loads act on the reference direction 1 through the stressing of hoop 
cables, in addition to the dead load applied in the reference direction 3. Referring to Fig. 7, three sets of horizontal loads H6, H7 and 

  



H8 are determined by solving the following nonlinear problem subjected to constraints in the numerical structural analysis. 
The nonlinear programming problem: Minimize the sum of squares of nodal displacements in the main structure under the conditions 
that H6, H7 and H8 work in tension. The numerical calculation is based on Powell’s variable metric method [4]. 
 
4.3 Comparison between systems 
The structural performances for the new structural system and the other two systems are investigated numerically based on the 
method of analysis in section 4.2. Fig. 11 shows the numerical comparison of nodal displacements, bending moments and axial force 
for t=0 using the following parameter. 
 
Distribution of nodal vertical load: P1=0, P2=P3= P*1.0, P4= P*0.9, P5= P*0.8, P6= P*0.7 where Pi is the concentrated vertical load 
at node i and P is magnitude of load. 
 
Data of 3-DMASE:  
Geometry (see Fig.1): φ=45o, n=6, θ1=15o, θ6=71.25o, ∆θ=11.25o, circumferential division number of dome=16  
Member information: λ1=200, λ2=250, λ3=200. Each λ is defined as r/i where i is the radii of gyration for each local axis and is 
calculated from AI / . I is moment of inertia or torsional constant for each local axis and A is the sectional area. I and A are the 
same for all elements of 3-DMASE.  
 
Additional member data: 
System A: sectional area of the inner and the outer ring is taken to be the same as A of 3-DMASE. 
System B: direction of post for t=0 is the normal of the spherical surface, length is 0.175*r, sectional area is 0.4*A, sectional area of 
suspension and stay cables is 0.2*A, length of post and stay cable is constant under retraction, sectional area of outer cable is A.  
New system: direction of two posts for t=0 is vertical, sectional area of two posts = 0.4*A, length of inner post = 1.5*(z6-z8), length 
of secondary inner post = 3.0*(z5-z7), sectional area of diagonal 
cable = 0.2*A, sectional area of zigzag cable = 0.4*A, sectional area of outer cable = A, length of posts and diagonal cables is 
constant under retraction.  
In the analysis of the new system, H6=0., H7= 2.562*P and H8=0. are the numerical solution for the given nonlinear programming 
problem. Referring to Fig. 11(a)(b)(d), the displacements and the bending moment with respect to the local axis 3 for the 
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new structural system are very small compared to those of systems A 
and B. Referring to Fig.11(c)(d), a large bending moment with respect 
to the local axis 2 occurs at node 4, and the axial forces of elements 3 
and 4 are relatively large, because the tension force of the zigzag cable 
acts on node 4 through H7. Overall, the structural performance of the 
new structural system is significantly better than that of systems A and 
B. 

n1(*P) 

new system
system B
system A

653 4
(node point i) 
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4.4 Numerical results of new system Concerning the new system, 
which indicates the best structural performance among the three 
proposed systems, its numerical structural analysis is carried out in a 
geometrical range where t= −0.25 ~ 0.25. The horizontal forces H6, H7 
and H8 are determined so as to minimize the sum of squares of nodal 
displacements in the main structure under the conditions that the hoop 
cables work in tension. Referring to Fig. 12, the nodal displacements Fig. 11(e) n1 
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nge of t from –0.25 to 0.25. A large vertical displacement occurs at t= –0.25 and 0.25, 
d a large bending moment with respect to the local axis 2 occurs at node 4 where t=0.25. Fig.13 shows the variations in the 

ces H6, H7 and tension forces To, T3-5 for t. Although the other horizontal force H8 is 0 for t in this analysis, the hoop 

 
5 Ending remarks 

DM spension Dome, an outer tension cable disposed 

lam  solving a nonlinear 
programming problem subjected to constraints. According to the numerical results, the new system which is called ‘cable-post 
system’, maintains high level of structural performance throughout the changes in geometry. The cable-post system seems that 
progress in the expansion-traction technology in high tension determines the realization of the RLD. 
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and member forces change significantly in the ra
an
horizontal for
cable through the node 8 may be useful in resisting a live load such as wind. 

For the RLD a new structural system that comprises a main structure and a substructure is proposed. The main structure consists of 3-
ASEs in lamella arrangement. The substructure comprises a part of an A

concentrically around the peripheral border of the main structure and zigzag cables in a concentric ring of quadrilaterals of the 
ella. Based on structural analysis, the tension forces of these cables are determined numerically by
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