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The general buckling behaviors of Cylindrical Reticulated Shell Roofs
(C.R.S.R.) are considerably influenced by the reticular pattern, shell geometry,
boundary condition and load distribution. To grasp the general buckling behaviors
of C.R.S.R. under these items, a method of approximate analysis is developed by
treating them as continuum structures. Based on this method, the general buckling
behaviors of isotropic C.R.S.R. are investigated numerically under various shell
geometries, generator boundaries, symmetrical or unsymmetrical normal load with
respect to the central generator, in comparison with the classical buckling load of
the closed cylinder subjected to a uniformly normal load.

I. INTRODUCTION

Single layer reticulated shells made of lightweight shapes or pipes are easily ap-
plicable in construction. On the other hand, they have a defect against the general instability
because of low bending rigidity. Therefore, it is important to confirm safety against general
buckling!?. However, there is scarcely any information for the general buckling of both
reticulated and monocoque cylindrical shell roofs in contrast to the large number of fruitful
results for the closed cylinder®¥. The general buckling behaviors of Cylindrical Reticulated
Shell Roofs (C.R.S.R.) formed from an assembly of triangular grids composed of longitudi-
nal and diagonal members are considerably influenced by the mechanical properties of a
reticular element, shell geometry, boundary condition and load distribution.

The purpose of this study is to make clear theoretically the general buckling behaviors
C.R.S.R. based on continuous treatment, paying attention to the above four items. As a
link in the chain of study, this paper contains the following.

(1) An approximate analytical method of deriving the geometrically nonlinear basic
equations which govern the general buckling phenomena of C.R.S.R. subjected to normal
load is developed under the boundary conditions that the two ends of the structure are
simply supported and the two generator edges are arbitrary.

(2) Based upon this method, the general buckling behaviors of isotropic C.R.S.R. are
investigated numerically under various shell geometries, generator boundary conditions,
symmetrical or unsymmetrical load with respect to the central generator, in comparison
with the classical buckling load of the closed cylinder.

II. NONLINEAR BASIC EQUATIONS

1) Basic Equations
Nonlinear basic equations of C.R.S.R. shown in Fig. 1, are given by the following
equations:®
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where N, M denote average axial force, bending moment per unit width of member, respec-

tivelyand U=—, V = E.

2) Boundary Equations
Equations of boundary condition are derived by considering member forces acting
along the edge together with Egs. (2). When the two ends are simply supported, considering

W= (M, + M,) cos’a + M, = (N, + N;) cos’a + N, =V=0; X=0,1
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and Egs. (2), the boundary equations become
W-=W'"=F"'=F=0yX=0,]1 3)

The following three boundary conditions along the generator edges (Y = +0.5) are consid-
ered in this paper:

(a) Pinned edge: from
W=(M,+ M, sinfa=U=V=0

and Egs. (2),

+1/2
W= W= F"—cot’afi*F" =f0 [(cot“a + Siti,"a) B*F' — cot*aF* + u, W — -é— w2

R e
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| ,,_0]] dt =0 (4a)

where the fourth equation of Egs. (4a) is obtained by considering the symmetry with
respect to the central arc.
(b) Simply supported edge: from

W = (M, + M,)sin’a = (N, + N,)sin*e = U=
and Egs. (2),
W= W:=F'=F"=0. (4b)

(c) Free edge: from

(M, + M,) sin*a = 2. w sinacosa - M‘;ﬁ—MZ) sinfe = N, =N, =0
and Egs. (2),

W= 4 cot?aftW" = W+ + 5 cot?af? W' = F" = F'"* = (. (4c)

III. APPROXIMATE ANALYTICAL METHOD

Under the boundary conditions that the two ends of the structure are simply supported
(Eq.(3)) and the two generator edges are arbitrary (for example, Egs.(4)), the nonlinear
basic equations(1) are solved by the approximate analytical method given below.

1) Nonlinear Simultaneous Ordinary Differential Equations
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Considering Eq. (3), W, F can be given by the following series:

W =3 fusinmaX = 3 (fos + fra) sin maX

)
F=3 gnsinmaX = 3, (gns + 8mo) sSin mnX ®)

where f,,,g,, are a function of Y only. From the symmetry with respect to the central arc,

m = 1,3,5, - - - - . Subscripts s, @ indicate symmetry and antisymmetry with respect to the

central generator, respectively. Substitution of Eqgs. (5) into Egs. (1) and applying Kantro-

vich’s method over the interval (0.,1.) for X, then separating the symmetrical and antisym-

metrical parts with respect to the central generator, the following equations are obtained:
a) Symmetrical part:

compatibility eq.;

Alm gm: = #hﬁszR{fMI + ?-ﬁz?fz zr: }E {U(ﬁxff:' +ﬂa:f:{a.)ptjm
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equilibrium eq.;
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b) Antisymmetrical part:
compatibility eq.;
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1
Qym = f sin X sin jrX sin mnX dX =
0

1 =1 1 1 1
Zz(m+i+j_m—i—j+m+i—f+m_i+f).

And the equations of various boundary conditions can be expressed using f},, g. for ex-
ample, in the case of simply supported, symmetrical part; from Eqgs. (4b) and Egs. (5)

S =g’ = &ms = &m" = 0,00 Y % (7a)

antisymmetrical part;

e =Jns" =8ne = gna" =0,0n ¥ ="1 (7b)

2) Presentation of the Solution

Equations (6) may be treated like linear equations by regarding the partially nonlinear
terms: @, Y., Pm. and ¥, as the functions of Y. So, the solution of Egs. (6) can be ob-
tained by superposition of a particular integral and the solution of the corresponding homo-
geneous equation.

a) Homogeneous solution

The forms of homogeneous solution: g.,.u, fmsk> Emans Smas VAry according to reticular
parameters: a, y, {; for example, the following solutions are obtained when y, { << 8 cos®a:

Zosh = Cipms 8indy, Ysh i, Y+ C,,,c08 4, Ychid,, Y
Emap = CimaCOs Ay, Ysh Ay, Y + C,.8indy, Ychi,, Y (8)
fm.rh=§meJCthm Y, fmah=EprmaShé‘me

where p = 1,2 C,.;, Comes Dpmes Dome are integration constants, sh = sinh, ch = cosh,

A = Zﬁgfa .\/2,\/cos‘*a + 94+ (2 cos?a — cozza), Eim = g_rr?g"/3 cos*a + /8 cos*a —

b) Particular solution

Particular solutions: g,..,, fisps &maps Smap are expressed by the form in Fourier trig-
onometric series over the interval (—0.5, 0.5)

gm;p = ; Sk,m COS k‘TfY, fm;p — kz [k:m cos k,?'fy

9
gmap = E Skam Siﬂ kan Y) fmay = Z tkam Sin kanY (
kﬂ' kﬂ
where k, =0, 2,4, 6----, k,=2,4, 6- -+, S¢ m, li.ms Skpms li,m are Fourier coefficients.

Similarly, the expansions of @,,, ¥,,, ®., and ¥, into Fourier trigonometric series for
| ¥] £ 0.5 become
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Py = 3 PrmcOs kY, W s = D% & cOS Y
k k
5 (10)
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where coefficients: pem, &k ms Pryms Ek,m CAN be determined by the following equations:

2
4fu (Prosy ¥rs) cO8 kn¥ dY; k, = 2
0

(pk:m: Eksm) — 12
2f (ff)m" g’m:) dYy ’ k, =0
0

1
(Pers Ehgsd =4[ (P, W) sin k¥ d¥ (1)

It is pointed out that the values of integration in Eq. (11) are expressed explicitly without
performing a numerical integration. Substituting Egs. (9), (10) into Egs. (6) and comparing
the coefficients, Eqs. (12) are obtained:

alp 4 2,2 42 b4 e 2 4 4( 4 I )} A
7 [k, + kj2m?p (sinzacosza 2 cot a) + m*p* (cotta + T Sym = Pregm
3—312 7t lk,‘ + k2m*f* 6 cot’a + m“ﬁ“(cot"a + 5{%}) teyn = Ekm
(12)
4lp 4 giging [ipmmu )e S . 4 2 4pa el e )i .
2 [kn b el (sinzacosza 2iect a] e (COL S Sil’l‘a” Skgm = Picgn

%n“ [ka“ + k,2m*p* 6 cot’a m“ﬁ‘(col“a -+ sif“a)l tem = Eiym
3) Numerical Method
Solving Eqs. (1) subjected to Eqgs. (3) and (4) results in finding a solution to Egs. (7), (12)
concerning coefficients: D, Domas Comes Comar tim * T Seams Sk (P = 1, 2,m = 1, 3,
5000, k,=0,2,4,6----,k,=2,4,6,----),4,, A,. A solution to these nonlinear sim-
ultaneous algebraic equations can be obtained by applying the Newton-Raphson procedure.

4) Analytical Method for the Case of Isotropic Reticular Pattern

When the reticular pattern is isotropic (y = { = 0.5, @ = 60°.), Egs. (1) are identical
with Donnell’s Equations setting Poisson’s ratio 1/3. Therefore, the general buckling pro-
blems of isotropic C. R. S, R. are mechanically equivalent to that of isotropic monocoque
cylindrical shells. In the case of isotropics, characteristic equations of Egs. (6) have equal
roots, so the forms of the homogeneous solutions should be different from the function repre-
sented in Egs. (8), as previously mentioned. However, using the forms of Egs. (8), the iso-
tropic problem can also be analyzed as follows.

Introducing small constant: #, Eqgs. (6) are transformed into Egs. (13):

Dlm(gm.r: gmn) = ((pmn ¢ma) + 2[))2’”2”1’7 (gnu"s gma”)

13
s Clano e = Py W) — 25 B2 (fvs™s ™) £
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where [Jim = - — 2f*m*=z*(1 F ) + f*m*n*, so when > 0 we can use the form of

Egs. (8) setting 4,,, — sz prm T =7, Ay, = % pmm S, En = pmn ST+ 7+
~2n +

IV. NUMERICAL RESULTS AND DISCUSSION

Based upon the analytical method represented in the previous section, in isotropic
(y =(=0.5, a = 60°.), the general buckling behaviors of C.R.S.R. subjected to a uni-
formly normal load are investigated in the range of = 0.5 ~ 1., g, = 100 ~ 300 with
pinned, simply supported or free generator edges. Furthermore, when generator edges are
simply supported, the effects of the imperfection on the general buckling behavior are
investigated by applying the unsymmetrical load as shown in Fig. 1c. The number of terms
in series and »# will influence the accuracy of the nonlinear solution. After verifying the
convergency of a few numerical examples® in this numerical computations, m, k,, k, are
adopted up to 2, 4, 4 terms respectively for the case of pinned or simply supported, and 3,
5, 5 terms for free edges, besides # = 0.005.

Generator Edge

Fig. la. Geometry.

\
Y I.—l—vl

Fig. 1b. Reticular pattern.
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9e—da E YsiSn=gt
Uniform, Symm. Load Uniform. A=Symm. Load S+4A. Load

Fig. 1c. Load distribution for circumferential direction.

1) Classical Buckling Load

The buckling loads obtained from nonlinear analysis are expressed by the ratio of the
classical buckling load A.,, for the closed cylinder subjected to a uniformly normal load.
When the two ends are simply supported, from Egs. (1) settingy = { = 0. 5,a = 60°, 4,,, is
given by the following equation:

Am=q1§;"(73h—)4=m’ [(0 )21(%}) i 11 32;12(9 n)z[l A% (ﬁn) }}

where 0, indicates the open angle and n is the half-wave number in the circumferential
direction. A4.,, is obtained from the minimum value of Eq. (14) concerning @,n. As shown
in Table 1; A, of Eq. (14) is expressed approximately by the following equation:

(14)

min*

1081 A = [1.4+ 10 (22 1 22— 350)} togi, + (5 — 2 + 0879)
Pt P8
as)
Tabled, ..
F=10 B=1/1.5 =05
Iy Eq. (14) (15) (14) (15) (14) (15)
100 1072, 1073. 681.7 682.2 499.6 500.0
125 1476. 1479. 943.5 945.2 693.2 694.3
150 1919. 1923, 1231. 1234, 906.3 907.9
175 2397, 2401, 1543. 1545, 1137. 1139.
200 2909. 2910. 1877. 1878. 1385. 1386,
225 3451. 3448. 2231, 2231. 1648, 1648,
250 4023. 4013. 2605, 2602. 1926. 1925.
275 4622, 4604. 2997. 2991. 2217. 2214.
300 5248. 5219, 3407. 3397. 2522, 2517.

2) Results under a Uniformly Normal Load

Two types of general buckling phenomena in the C.R.S.R. subjected to a uniformly
normal load are studied numerically here. One is snap-through buckling with the deflection
pattern symmetrical with respect to both the center lines, and the other is bifurcation buck-
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ling with the buckling mode symmetrical with respect to the central arc and antisymmetrical
with reference to the central generator. The numerical results are shown in Figs. 2-4 in
each boundary condition.

Ao
AGFO
tical load of a uniformly normal load. Snap-through buckling occurs for the case of

(B=1,100 < 4, < 150), (= 75, 100 < 4, < 275), (5 =0.5, 100 <, < 300) and

half-wave number of its buckling mode N is 3. For =1, 175 < p; < 275, as shown in
Fig. 2b,c, bifurcation buckling occurs before the local maximum load is attained, and

(a) Pinned edge: is larger than unity, as shown in Fig. 2a, where A, is the cri-

cr_

s approximately expressed by using constants, k,, k,, k; as in
cro

the following equation.

N = 4. In each range

A 3

L (16)
Acra =1

For =1, u, = 300, just after bifurcation buckling, an incremental deflection of N = 5
yields newly as shown in Fig.2c, therefore both types of buckling may occur adjacent
to each other.

AC?
A

(b) Simply supported edge: is less than unity, as shown in Fig.3a. For g, = 150,

cro

it can be pointed out that the smaller f, the higher becomes j" . For =1, uy = 225

snap-through buckling occurs without bifurcation buckling, and N = 3. For the other
parameters, bifurcation buckling precedes and N = 2. For (f =1, 100 < g, < 200),

1 A

<% are approximately expressed by the following equation.

cro

2.0
=0.5
L R=115 = —
————4
i=1.0
1.0 |
AcrlAcro
White : Snap-Through Buckling
[ Black : Bifurcation Buckling
0.
100 150 200 250 300

—— h

Fig. 2a. A./A.,, (Pinned).
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o Bifurcation Point
15 300

275 f225

y‘I?S

Al Acro

e T o
w é/—‘] 100

1.0

Mn |Act/Acro
100 | 1.130(S)
125 | 1173 |
150 [ 1.252(S)
175 | 1.350(B)

200 | 1327
¥ 225] 1313
250 1.307
275 | 1.331
300 | 1.300(B)
S : Snap-Through Buckling
B: Bifurcation Bll.lckling

0 0.1 0.2

— Wav

Fig. 2b. AJA,,-W,, (Pinned, f = I).

& 300

150‘
MUh=100

Fig. 2c. Buckling mode (Pinned, § = 1).

2
L (17

Acr.ﬂ’
*A

where A, is the bifurcation buckling load. When f = 0.5 are considered to be nearly

cro
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1.0

0.75 + -
Acr/Acro B

‘\ p=1/15
,] o ‘\‘*l’f

0.25

100 150 200 250 300
— AJh

Fig. 3a. A./A.,, (Simply supported = s.5.).

1.0

AlAcro

0.75

| 100|

i

125
} 50

L
§ oAt o A
0.5 25—

250
| 300

Mh | Acrl Acro
100 | 0.681(B) |
125 | 0.647 {
150 | 0.608
175 | 0.569
200 | 0.532(B)
225 | 0.500(S)
250 | 0.483
275 | 0.477

300 | 0.475(S)
il
0 0.7 L4 0.7
3 3

0.25

——r Wav

Fig. 3b. A/A.,.-W,, (5.5., B = 1).

13
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A

/)
d(Wa)
decreases greatly before bifurcation buckling occurs. Where W,, is the average of non-

constant as shown Fig. 3a. When f = 1, as shown in Fig. 3b, there is a part where

. . : : A ; :
dimensional normal deflection. After this part, 5w W,, holds an almost linear relation,
cro

and then bifurcation buckling occurs on this line.

(c) Freeedge: j“’ and the types of buckling are identical with that of simply supported

cro

edge excluding f = 0.5, g, < 150. From comparison between Fig.3c and Fig.4c, it can be
said that both modes of buckling are similar except in the neighborhood of the generator
edges. For f# = 0.5, u, = 125, snap-through buckling and bifurcation buckling occur
adjacent to each other.

(d) Influence of the generator boundary condition: j“ , both type and mode of buck-

0.—Y 0.25 0.5

Fig. 3c. Buckling mode (s.s., f# = 1).

1.0 W

Acrlicro

1 0.75 — %‘:&:.Q____.::]'

0.5 [
/ Cee—
0

0.25

Fig. 4a. A.,/A.,.(Free).
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1.0
Ah | AcriAcro
Alhcro 100 | 0.703(B)
1 125 | 0.653
150 | 0.603
| [175 | 0585
i 200 | 0.512
225 | 0.472 125
250 | 0.443(B)
275 | 0.395(S) / 29
300 | 0.387(S) iod
0.5 f———" ==
0.25
|
0 1.5 3.0 4.5

—— wl0.25,0.3

Fig. 4b. A/A.,-W|0.25, 0.3 (Free, § = 1).

-\ 0.25 05
T

300
Fig. 4c. Buckling mode (Free, f = 1).

ling in case of a simply supported edge are identical with that for free edge excluding f =
0.5, p, < 150, in spite of the different deflection and stress at the onset of buckling.
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Comparing the results of pinning with those of simply supporting, it can be pointed out
that the restraint of circumferential direction at the generator edge has a great influence
upon the buckling load.

3) Effects of Imperfection

The effects of imperfection upon the buckling load in simply supported edges are in-
vestigated by applying the unsymmetrical load as shown in Fig, lc. Such an unsym-
metrical load may occur in practice for the shell roofs under both snow and wind loads.

Introducing K=%‘:—A", numerical analysis has been performed in the range of
K=1,0095,009,0.5,0, f=1, 0.5 g, = 100 ~ 300 @ 50.
Aﬂﬂf

As shown in Fig. 5a is reduced monotonously as K decreases, where A, is

scr

i ACJ’O
the critical value of A,. Especially, when bifurcation buckling occurs (f = 1, g, = 100 ~
200 and f = 0.5, u; = 100 ~ 300) as shown in Fig. 5b,c, g—’ﬂ'
erable amount by the small antisymmetrical load. For example, in the case of =1,
ASC’

is lowered by a consid-

H, = 100, adding to the results shown in Fig. 5d

- ACFD
%55’ = 0.597 when K = 0.925. Therefore for 0.9 < K < 1, the following approximate equa-

tion is obtained:

= (0.640 when K = 0.975, and

0.75F
Ascr
Acro
05—
0.25F e
K
P o 1.0
{5k < 0.95
- 0.9
---= 1.0 a 0.5
- 0.
1 1 1 1 1
100 150 200 250 300
— A—'h

Fig. Sa. A.n:rf,/rcra-
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1.0
Ascr
Acr
300
250
e 200
150
100
! |
O 0.5 0.
— K
Fig. 5b. A, [A.-k (= 1).
1.0
Ascr
Acr
100
g5 50
300,250
200
| |
%42 0.5 0.
— K
Fig. 5¢c. A, [A,-k (f = 0.5).
A 1 — k\}
sor = " golle Y 8
Aer I i (l -+ k) (45
Eq. (18) indicates a two-thirds power law for the unstable symmetric point of bifurcation.®
For f=1 and K= 0.5, 0, j‘" is almost constant at 0.380 and 0.225, respectively,

cro

throughout the whole range of u, considered here. Therefore, it is considered that ;1’— is the

function of K only in the range of relatively small K.

] Acr
Where A,,, is the critical value of 4, (=4, + A4,). For the same K, it can be pointed out

When bifurcation buckling occurs

is less than unity, as shown in Fig. Se,f.
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0.75
K=1.0
As
Acro
0.5
0.25
o s ——
f o K |AscriAcro
/' 1.0 [ 0.681
: . 0.95| 0.620
2 0.9 | 0.579
f 0.5 | 0.387
0. 0.225
I . I
0. 1.0 2,0 3.0

—— w|0.5,20.3
Fig. 5d. A,/A.,-W[0.5, £ 0.3 (8 = 1,/u, = 100).

300
250
1.0 .
200
Atcr
Acr 20
1 100
0.5}
0. 1 B |
1k 0.5 0.
R K

Fig. 5e. Ay fA.~K (B =1).

ter

that the smaller g, with f# =1 and the larger y, with f = 0.5, the smaller 1 becomes.

On the other hand, when snap-through buckling occurs (f = 1, x, = 225 ~ 300),
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1.0 100
Mo
Acr 150
00
300, 250
05T
0. 1 J
1. 0.5 0.
—_— K

Fig. 5f. A, /A.-k(f = 0.5).

j—’" is larger than unity. For the same K, it can be pointed out that the larger g, the larger
ﬁ'“’ becomes.

cr

Consequently, for f = 1, around g, = 225, in which both snap-through and bifurca-

rcr

’ ACF

tion buckling load are almost same is nearly unity without regard to K.

V. CONCLUSION

An approximate analytical method of the nonlinear basic equations which govern the
general buckling phenomena of C.R.S.R. subjected to a normal load has been developed
under the boundary conditions that the two ends of the structure are simply supported
and the two generator edges are arbitrary.

Based upon this method, the general buckling behaviors of isotropic C.R.S.R. have
been investigated numerically under shell geometries in the range of 0.5 < < 1,100 <
iy =< 300, pinned., simply supported and free generator boundaries, unsymmetrical
loading parameter 0. < K < 1, in compared with classical buckling load of the closed
cylinder subjected to a uniformly normal load.
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